$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Direct evaluation of the local stability of structures using nonlinear FE solutions

Structural engineering and mechanics : An international journal, v.80 no.4, 2021년, pp.477 - 490  

Oh, Min-Han (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ,  Kim, Hyo-Jin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ,  Yoon, Kyungho (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ,  Lee, Phill-Seung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

In this paper, we propose three practical methods for directly evaluating stability in a local structural part of a large structure (local structure). The local stability is assessed by investigating global external load, local internal force, local strain energy, and local displacement, all calcula...

Keyword

참고문헌 (46)

  1. ABS (2018), Guide for Buckling and Ultimate Strength Assessment for Offshore Structures, American Bureau of Shipping, New York, U.S.A. 

  2. AISC (2016), ANSI/AISC 360-16, An American National Standard: Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, U.S.A. 

  3. API (2014), RP 2A-WSD, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms- Working Stress Design, American Petroleum Institute, Washington, U.S.A. 

  4. Bazant, Z.P. and Cedolin, L. (1991), Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories, Oxford University Press, New York, U.S.A. 

  5. Bisagni, C. and Vescovini, R. (2009), "Analytical formulation for local buckling and post-buckling analysis of stiffened laminated panels", Thin Wall. Struct., 47(3), 318-334. https://doi.org/10.1016/j.tws.2008.07.006. 

  6. Blarez, E. (2018), "Moho Nord, a complex integrated project", Offshore Technol. Conf. Asia, Kuala Lumpur, Malaysia, March. https://doi.org/10.4043/28406-ms. 

  7. Brubak, L. and Hellesland, J. (2007), "Approximate buckling strength analysis of arbitrarily stiffened, stepped plates", Eng. Struct., 29(9), 2321-2333. https://doi.org/10.1016/j.engstruct.2006.12.002. 

  8. Brubak, L., Hellesland, J. and Steen, E. (2007), "Semi-analytical buckling strength analysis of plates with arbitrary stiffener arrangements", J. Constr. Steel Res., 63(4), 532-543. https://doi.org/10.1016/j.jcsr.2006.06.002. 

  9. BV (2018), Rule Note NI 615 DT R02 E, Buckling Assessment of Plated Structures, Bureau Veritas, Paris, France. 

  10. DNV (2010), DNV-RP-C201, Recommended Practice: Buckling Strength of Plated Structures, Det Norske Veritas, Oslo, Norway. 

  11. DNVGL (2015), DNVGL-CG-0128, Class Guideline: Buckling, DNVGL, Oslo, Norway. 

  12. DNVGL (2017), DNVGL-RP-C202, Recommended Practice: Buckling Strength of Shells, DNVGL, Oslo, Norway. 

  13. DNVGL (2018), DNVGL-RU-SHIP Pt.3 Ch.8, Rules for Classification: Buckling, DNVGL, Oslo, Norway. 

  14. Jamshidi, S. and Fallah, N. (2019), "Buckling analysis of arbitrary point-supported plates using new hp-cloud shape functions", Struct. Eng. Mech., 70(6), 711-722. https://doi.org/10.12989/sem.2019.70.6.711. 

  15. Jaunky, N., Knight, N.F. and Ambur, D.R. (1995a), "Buckling analysis of general triangular anisotropic plates using polynomials", AIAA J., 33(12), 9387-2654. https://doi.org/10.2514/3.13000. 

  16. Jaunky, N., Knight, N.F. and Ambur, D.R. (1995b), "Buckling of arbitrary quadrilateral anisotropic plates", AIAA J., 33(5), 938-944. https://doi.org/10.2514/3.12512. 

  17. Jeon, H.M., Lee, P.S. and Bathe, K.J. (2014), "The MITC3 shell finite element enriched by interpolation covers", Comput. Struct., 134, 128-142. https://doi.org/10.1016/j.compstruc.2013.12.003. 

  18. Jeon, H.M., Lee, Y., Lee, P.S. and Bathe, K.J. (2015), "The MITC3+ shell element in geometric nonlinear analysis", Comput. Struct., 146, 91-104. https://doi.org/10.1016/j.compstruc.2014.09.004. 

  19. Kim, B.J., Park, Y.M., Kim, K. and Choi, B.H. (2019), "Web bend-buckling strength of plate girders with two longitudinal web stiffeners", Struct. Eng. Mech., 69(4), 383-397. https://doi.org/10.12989/sem.2019.69.4.383. 

  20. Kim, D.K., Poh, B.Y., Lee, J.R. and Paik, J.K. (2018a), "Ultimate strength of initially deflected plate under longitudinal compression: Part IAn advanced empirical formulation", Struct. Eng. Mech., 68(2), 247-259. https://doi.org/10.12989/sem.2018.68.2.247. 

  21. Kim, H.S., Park, Y.M., Kim, B.J. and Kim, K. (2018b), "Numerical investigation of buckling strength of longitudinally stiffened web of plate girders subjected to bending", Struct. Eng. Mech., 65(2), 141-154. https://doi.org/10.12989/sem.2018.65.2.141. 

  22. Kim, J.H., Jeon, J.H., Park, J.S., Seo, H.D., Ahn, H.J. and Lee, J.M. (2015), "Effect of reinforcement on buckling and ultimate strength of perforated plates", Int. J. Mech. Sci., 92, 194-205. https://doi.org/10.1016/j.ijmecsci.2014.12.016. 

  23. Kim, U.N., Choe, I.H. and Paik, J.K. (2009), "Buckling and ultimate strength of perforated plate panels subject to axial compression: experimental and numerical investigations with design formulations", Ship. Offshore Struct., 4(4), 337-361. https://doi.org/10.1080/17445300902990606. 

  24. Ko, Y., Lee, P.S. and Bathe, K.J. (2016), "The MITC4+ shell element and its performance", Comput. Struct., 169, 57-68. https://doi.org/10.1016/j.compstruc.2016.03.002. 

  25. Ko, Y., Lee, P.S. and Bathe, K.J. (2017), "A new MITC4+ shell element", Comput. Struct., 182, 404-418. https://doi.org/10.1016/j.compstruc.2016.11.004. 

  26. Komur, M.A. and Sonmez, M. (2008), "Elastic buckling of perforated plates subjected to linearly varying in-plane loading", Struct. Eng. Mech., 28(3), 353-356. https://doi.org/10.12989/sem.2008.28.3.353. 

  27. Lee, P.S. and Bathe, K.J. (2005), "Insight into finite element shell discretizations by use of the "basic shell mathematical model"", Comput. Struct., 83, 69-90. https://doi.org/10.1016/j.compstruc.2004.07.005. 

  28. Lee, P.S. and Bathe, K.J. (2010), "The quadratic MITC plate and MITC shell elements in plate bending", Adv. Eng. Softw., 41(5), 712-728. https://doi.org/10.1016/j.advengsoft.2009.12.011. 

  29. Lee, P.S., Noh, H.C. and Bathe, K.J. (2007), "Insight into 3-node triangular shell finite elements: the effects of element isotropy and mesh patterns", Comput. Struct., 85, 404-418. https://doi.org/10.1016/j.compstruc.2006.10.006. 

  30. Lee, S.E., Thayamballi, A.K. and Paik, J.K. (2015), "Ultimate strength of steel brackets in ship structures", Ocean Eng., 101, 182-200. https://doi.org/10.1016/j.oceaneng.2015.04.030. 

  31. Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005. 

  32. Lei, Y., Chen, S., Wang, L. and Xu, H. (2018), "Global strength analysis of a monocolumn FPSO", Proc. Int. Offshore Polar Eng. Conf., Sapporo, Japan, June. 

  33. Mohammadzadeh, B., Choi, E. and Kim, W.J. (2018), "Comprehensive investigation of buckling behavior of plates considering effects of holes", Struct. Eng. Mech., 68(2), 261-275. https://doi.org/10.12989/sem.2018.68.2.261. 

  34. MSC Software (2018), MSC Nastran 2018 Quick Reference Guide, MSC Software, Newport Beach, U.S.A. 

  35. Muhammad, T. and Singh, A.V. (2005), "The buckling of rectangular plates with opening using a polynomial method", Struct. Eng. Mech., 21(2), 151-168. https://doi.org/10.12989/sem.2005.21.2.151. 

  36. Oh, M.H. (2020), "A practical method for evaluating stability of local structures using strain energy variation", Ph.D. Dissertation, Korea Advanced Institute of Science and Technology, Daejeon. 

  37. Pei, Z., Iijima, K., Fujikubo, M., Tanaka, S., Okazawa, S. and Yao, T. (2015), "Simulation on progressive collapse behaviour of whole ship model under extreme waves using idealized structural unit method", Marine Struct., 40, 104-133. https://doi.org/10.1016/j.marstruc.2014.11.002. 

  38. Saad-Eldeen, S., Garbatov, Y.C. and Soares, G. (2016), "Experimental strength assessment of thin steel plates with a central elongated circular opening", J. Constr. Steel Res., 118, 135-144. https://doi.org/10.1016/j.jcsr.2015.11.005. 

  39. Saadatpour, M.M., Azhari, M. and Bradford, M.A. (1998), "Buckling of arbitrary quadrilateral plates with intermediate supports using the Galerkin method", Comput. Meth. Appl. Mech. Eng., 164(3-4), 297-306. https://doi.org/10.1016/S0045-7825(98)00030-9. 

  40. Tham, L.G. and Szeto, H.Y. (1990), "Buckling analysis of arbitrarily shaped plates by spline finite strip method", Comput. Struct., 36(4), 729-735. https://doi.org/10.1016/0045-7949(90)90087-I. 

  41. Wang, C.M. and Liew, K.M. (1994), "Buckling of triangular plates under uniform compression", Eng. Struct., 16(1), 43-50. https://doi.org/10.1016/0141-0296(94)90103-1. 

  42. Wang, D. and Abdalla, M.M. (2015), "Global and local buckling analysis of grid-stiffened composite panels", Compos. Struct., 119, 767-776. https://doi.org/10.1016/j.compstruct.2014.09.050. 

  43. Wu, L. and Feng, W. (2003), "Differential cubature method for buckling analysis of arbitrary quadrilateral thick plates", Struct. Eng. Mech., 16(3), 259-274. https://doi.org/10.12989/sem.2003.16.3.259. 

  44. Xiang, Y. (2002), "Buckling of triangular plates with elastic edge constraints", Acta Mech., 156(1-2), 63-77. https://doi.org/10.1007/BF01188742. 

  45. Xiang, Y., Wang, C.M., Kitipornchai, S. and Liew, K.M. (1994), "Buckling of triangular Mindlin plates under isotropic in-plane compression", Acta Mech., 102(1-4), 123-135. https://doi.org/10.1007/BF01178522. 

  46. Zi, G., Kim, H.H., Ahn, J.Y. and Oh, M.H. (2017), "Evaluation of buckling strength of non-structured plates by using the deformation energy", J. Korea Inst. Struct. Mainten. Inspect., 21(3), 102-113. https://doi.org/10.11112/jksmi.2017.21.3.102. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로