$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

인천 공항 주변 고해상도 항공기 추적 정보 기반의 바람 관측자료 생산 및 품질 검증
Retrieval and Quality Assessment of Atmospheric Winds from the Aircraft-Based Observation Near Incheon International Airport, Korea 원문보기

대기 = Atmosphere, v.32 no.4, 2022년, pp.323 - 340  

김정민 (서울대학교 지구환경과학부) ,  김정훈 (서울대학교 지구환경과학부)

Abstract AI-Helper 아이콘AI-Helper

We analyzed the high-resolution wind data of Aircraft-Based Observation from the Mode-Selective Enhanced Surveillance (Mode-S EHS) data in Korea. For assessment of its quality, the Mode-S wind data was compared with the ECMWF ReAnalysis 5 (ERA5) reanalysis and Aircraft Meteorological Data Relay (AMD...

주제어

표/그림 (17)

참고문헌 (33)

  1. Ballish, B. A., and V. K. Kumar, 2008: Systematic differences in aircraft and radiosonde temperatures: im-plications for NWP and climate studies. Bull. Am. Meteorol. Soc., 89, 1689-1708. 

  2. Cardinali, C., L. Isaksen, and E. Andersson, 2003: Use and impact of automated aircraft data in a global 4DVAR data assimilation system. Mon. Wea. Rev., 131, 1865-1877. 

  3. Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828. 

  4. de Haan, S., and Stoffelen, A. High resolution temperature and wind observations from commercial aircraft. In: Proceedings of the 8th International Symposium on Tropospheric Profiling; 19-23 October 2009; Delft, Netherlands. 

  5. de Haan, S., 2011: High-resolution wind and temperature observations from aircraft tracked by mode-S air traffic control radar. J. Geophys. Res. Atmos., 116, D10111, doi:10.1029/2010JD015264. 

  6. de Haan, S., M. de Haij, and J. Sondij, 2013: The Use of a Commercial ADS-B Receiver to Derive Upper Air Wind and Temperature Observations from Mode-S EHS Information in The Netherlands. Royal Netherlands Meteorological Institute (KNMI). 

  7. de Leege, A. M. P., M. M. van Paassen, and M. Mulder, 2013: Using automatic dependent surveillance-broadcast for meteorological monitoring. J. Aircr., 50, 249-261, doi:10.2514/1.C031901. 

  8. Drue, C., and G. Heinemann, 2001: Airborne investigation of arctic boundary-layer fronts over the marginal ice zone of the Davis Strait. Bound. Layer Meteorol., 101, 261-292. 

  9. Drue, C., W. Frey, A. Hoff, and T. Hauf, 2008: Aircraft type-specific errors in AMDAR weather reports from commercial aircraft. Q. J. R. Meteorol. Soc., 134, 229-239. 

  10. Drue, C., T. Hauf, and A. Hoff, 2010: Comparison of boundary-layer profiles and layer detection by AMDAR and WTR/RASS at Frankfurt airport. Bound. Layer Meteorol., 135, 407-432, doi:10.1007/s10546-010-9485-0. 

  11. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc., 146, 1999-2049, doi:10.1002/qj.3803. 

  12. Huntley, M. S. Jr., J. W. Turner, C. S. Donovan, and E. Madigan, 1995: FAA Aircraft Certification Human Factors and Operations Checklist for Standalone GPS Receivers (TSO C129 Class A). Federal Aviation Administration, 230 pp. 

  13. Kemp, D. E., 1968: Federal aviation administration air safety program. J. Air Law Commer., 34, 363. 

  14. Kim, J.-H., and H.-Y. Chun, 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteorol. Climatol., 50, 311-324, doi:10.1175/2010JAMC2492.1. 

  15. Kim, J.-H., and H.-Y. Chun, 2012: A numerical simulation of convectively induced turbulence above deep convection. J. Appl. Meteorol. Climatol., 51, 1180-1200, doi:10.1175/JAMC-D-11-0140.1.x 

  16. Kim, J.-H., J.-R. Park, S.-H. Kim, J. Kim, E. Lee, S.-W. Baek, and G. Lee, 2021: A detection of convectively induced turbulence using in situ aircraft and radar spectral width data. Remote Sens., 13, 726, doi:10.3390/rs13040726. 

  17. Kim, S.-H., and H.-Y. Chun, 2016: Aviation turbulence encounters detected from aircraft observations: spatiotemporal characteristics and application to Korean aviation turbulence guidance. Meteorol. Appl., 23, 594-604, doi:10.1002/met.1581. 

  18. Kim, S.-H., H.-Y. Chun, J.-H. Kim, R. D. Sharman, and M. Strahan, 2020: Retrieval of eddy dissipation rate from derived equivalent vertical gust included in aircraft meteorological data relay (AMDAR). Atmos. Meas. Tech., 13, 1373-1385, doi:10.5194/amt-13-1373-2020. 

  19. Kim, S.-H., J. Kim, J.-H. Kim, and H.-Y. Chun, 2022: Characteristics of the derived energy dissipation rate using the 1 Hz commercial aircraft quick access recorder (QAR) data. Atmos. Meas. Tech., 15, 2277-2298, doi:10.5194/amt-15-2277-2022. 

  20. Lee, D. K., H. R. Kim, and S. Y. Hong, 1998: Heavy rainfall over Korea during 1980~1990. Korean J. Atmos. Sci., 1, 32-50 (in Korean with English abstract). 

  21. Moninger, W. R., R. D. Mamrosh, and P. M. Pauley, 2003: Automated meteorological reports from commercial aircraft. Bull. Am. Meteorol. Soc., 84, 203-216. 

  22. Park, S. U., C. H. Joung, S. S. Kim, D. K. Lee, S. C. Yoon, Y. K. Jeong, and S. G. Hong, 1986: Synoptic-scale features of the heavy rainfall occurred over Korea during 1~3 September 1984. Asia-Pac. J. Atmos. Sci., 22, 42-81. 

  23. Petersen, R. A., 2016: On the impact and benefits of AMDAR observations in operational forecasting-part I: a review of the impact of automated aircraft wind and temperature reports. Bull. Am. Meteorol. Soc., 97, 585-602, doi:10.1175/BAMS-D-14-00055.1. 

  24. Sharman, R., C. Tebaldi, G. Wiener, and J. Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21, 268-287. 

  25. Sharman, R., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteorol. Climatol., 53, 1416-1432, doi:10.1175/JAMC-D-13-0329.1. 

  26. Stickland, J. J., 1998: An Assessment of Two Algorithms for Automatic Measurement and Reporting of Turbulence from Commercial Public Transport Aircraft. Bureau of Meteorology, 42 pp. 

  27. Stoffelen, A., 1998: Toward the true near-surface wind speed: error modeling and calibration using triple collocation. J. Geophys. Res. Oceans, 103, 7755-7766. 

  28. Stone, E. K., and M. Kitchen, 2015: Introducing an approach for extracting temperature from aircraft GNSS and pressure altitude reports in ADS-B messages. J. Atmos. Ocean. Technol., 32, 736-743, doi:10.1175/JTECH-D-14-00192.1 

  29. Trier, S. B., R. D. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Wea. Rev., 140, 2477-2496, doi:10.1175/MWR-D-11-00353.1. 

  30. Trier, S. B., and R. D. Sharman, 2018: Trapped gravity waves and their association with turbulence in a large thunderstorm anvil during PECAN. Mon. Wea. Rev., 146, 3031-3052, doi:10.1175/MWR-D-18-0152.1. 

  31. World Meteorological Organization [WMO], 2003: Aircraft Meteorological Data Relay (AMDAR) Reference Manual. WMO, 80 pp. 

  32. World Meteorological Organization [WMO], 2017: Guide to aircraft-based observations. WMO, 132 pp. [Available online at https://library.wmo.int/doc_num.php?explnum_id4120] (Accessed 7 Jun 2022). 

  33. WMO AMDAR Panel, 2007: The international AMDAR program. World Meteorol. Organ. Inf. Fly., 12, 141 pp. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로