최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기대한원격탐사학회지 = Korean journal of remote sensing, v.38 no.6 pt.1, 2022년, pp.1091 - 1100
예철수 (극동대학교 AI컴퓨터공학과) , 안영만 (극동대학교 AI컴퓨터공학과) , 백태웅 (극동대학교 AI컴퓨터공학과) , 김경태 (극동대학교 AI컴퓨터공학과)
As deep learning technology advances and various high-resolution remote sensing images are available, interest in using deep learning technology and remote sensing big data to detect buildings and change in urban areas is increasing significantly. In this paper, for semantic building segmentation of...
Deng, W., Q. Shi, and J. Li, 2021. Attention-gate-based encoder-decoder network for automatical building extraction, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 2611-2620. https://doi.org/10.1109/JSTARS.2021.3058097
Foivos, I.D., F. Waldner, P. Caccetta, and C. Wu, 2020. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data, ISPRS Journal of Photogrammetry and Remote Sensing, 162: 94-114. https://doi.org/10.48550/arXiv.1904.00592
Guo, M., H. Liu, Y. Xu, and Y. Huang, 2020. Building extraction based on U-Net with an attention block and multiple losses, Remote Sensing, 12(9): 1400. https://doi.org/10.3390/rs12091400
Jin, Y., W. Xu, C. Zhang, X. Luo, and H. Jia, 2021. Boundary-aware refined network for automatic building extraction in very high-resolution urban aerial images, Remote Sensing, 13(4): 692. https://doi.org/10.3390/rs13040692
Li, C., L. Fu, Q. Zhu, J. Zhu, Z. Fang, Y. Xie, Y. Guo, and Y. Gong, 2021. Attention enhanced U-Net for building extraction from farmland based on google and WorldView-2 remote sensing images, Remote Sensing, 13(21): 4411. https://doi.org/10.3390/rs13214411
Wang, H. and M. Fang, 2022. Building extraction from remote sensing images using deep residual U-Net, European Journal of Remote Sensing, 55(1): 71-85. https://doi.org/10.1080/22797254.2021.2018944
Wu, T., Y. Hu, L. Peng, and R. Chen, 2020. Improved anchor-free instance segmentation for building extraction from high-resolution remote sensing images, Remote Sensing, 12(18): 2910. https://doi.org/10.3390/rs12182910
Ye, C.S., Y.M. Ahn, T.W. Baek, and K.T. Kim, 2022. UNet-based deep learning model performance analysis for semantic building segmentation of remote sensing images, Proc. of 2022 Fall Conference of the Korean Society for Remote Sensing, Busan, Nov. 7-9, p. 29.
Ye, Z., Y. Fu, M. Gan, J. Deng, A. Comber, and K. Wang, 2019. Building extraction from very high resolution aerial imagery using joint attention deep neural network, Remote Sensing, 11(24): 2970. https://doi.org/10.3390/rs11242970
Yi, Y., Z. Zhang, W. Zhang, C. Zhang, W. Li, and T. Zhao, 2019. Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network, Remote Sensing, 11(15): 1774. https://doi.org/10.3390/rs11151774
Zhang, Z., Q. Liu, and Y. Wang, 2018. Road extraction by deep residual U-Net, IEEE Geoscience and Remote Sensing Letters, 15(5): 749-753. https://doi.org/10.1109/LGRS.2018.2802944
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.