$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

딥러닝 기법을 이용한 제주도 중제주수역 지하수위 예측 모델개발
Development of Deep-Learning-Based Models for Predicting Groundwater Levels in the Middle-Jeju Watershed, Jeju Island 원문보기

지질공학 = The journal of engineering geology, v.32 no.4, 2022년, pp.697 - 723  

박재성 (경북대학교 지질학과) ,  정지호 (경북대학교 지질학과) ,  정진아 (경북대학교 지질학과) ,  김기홍 (제주특별자치도 디지털융합과) ,  신재현 (제주특별자치도 디지털융합과) ,  이동엽 (제주특별자치도 디지털융합과) ,  정새봄 (제주특별자치도 디지털융합과)

초록
AI-Helper 아이콘AI-Helper

본연구에서는 제주도의 중제주 수역 내에 위치하는 총 12개 지하수 관정에서 미래 30일 기간의 지하수위를 예측할 수 있는 모델을 개발하였다. 예측 모델개발을 위해 시계열 예측에 적합한 딥러닝 기법의 하나인 누적 장단기 메모리(stacked-LSTM) 기법을 이용하였으며, 2001년에서 2022년 동안 관측된 일 단위 강수량, 지하수 이용량 및 지하수위 자료가 예측 모델개발에 활용되었다. 특히, 본 연구에서는 입력자료의 종류 및 과거 자료의 순차 길이에 따라 다양한 모델을 구축하고 성능을 비교함으로써 딥러닝 기반 예측 모델개발에서 고려하여야 할 사항에 대한 검토와 절차를 제시하였다. 예측 모델개발 결과, 강수량, 지하수 이용량 및 과거 지하수위를 모두 입력자료로 활용하는 모델의 예측성능이 가장 뛰어난 것으로 확인되었으며, 입력으로 활용되는 과거 자료의 순차가 길수록 예측의 성능이 향상됨을 확인하였다. 이는 제주도의 깊은 지하수위 심도로 인하여 강수와 지하수 함양지연시간이 길기 때문으로 판단된다. 이뿐만 아니라, 지하수 이용량 자료의 경우, 모든 이용량 자료를 활용하는 것보다 예측하고자 하는 지점의 지하수위에 민감한 영향을 주는 관정을 선별하여 입력자료로 이용하는 것이 예측 모델의 성능 개선에 긍정적 영향을 주는 것을 확인하였다. 본 연구에서 개발된 지하수위 예측 모델은 현재의 강수량 및 지하수 이용량을 기반으로 미래의 지하수위를 예측할 수 있어 미래의 지하수량에 대한 건전성 정보를 제공함에 따라 적정 지하수량 유지를 위한 다양한 관리방안 마련에 도움이 될 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Data-driven models to predict groundwater levels 30 days in advance were developed for 12 groundwater monitoring stations in the middle-Jeju watershed, Jeju Island. Stacked long short-term memory (stacked-LSTM), a deep learning technique suitable for time series forecasting, was used for model devel...

주제어

표/그림 (11)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구에서는 stacked LSTM 모델을 기반으로 과거 시점에서 관측된 강수량 및 지하수 이용량을 기반으로 미래 한 달간의 지하수위를 예측하고자 하였다. 따라서 예측모델의 입력자료로 강수량, 지하수 이용량 및 지하수위 자료가 활용되었다.
  • 본 연구에서는 stacked-LSTM을 이용하여 제주 중제주 수역 내 위치하는 총 12개 지하수위 관정에 대하여 미래 30일 동안의 지하수위를 예측할 수 있는 모델을 개발하였다. JI오등1, JI오등2, JI오등4, JI오등5, JD용담1, JM도남2, JM이도2, JP오라, JW공항, JW연동, JW일도, 및 금산수원지에 대하여 개별적인 예측 모델이 개발되었으며, 2001년에서 2022년 동안 관측된 일 단위 강수량, 지하수 이용량, 및 지하수위 자료가 예측 모델개발에 활용되었다.
  • 본 연구에서는 제주도 중제주수역의 총 12개의 지하수 관측정에서의 미래 지하수위를 예측하기 위한 모델을 개발하였다. 예측 모델개발을 위해 강수량 및 지하수 이용량 자료를 활용하였으며, 예측 모델의 성능을 향상시키기 위한 다양한 방안을 고안 및 비교 검증하여 최종 예측 모델을 제시하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (34)

  1. Afzaal, H., Farooque, A.A., Abbas, F., Acharya, B., Esau, T., 2020, Groundwater estimation from major physical hydrology components using artificial neural networks and deep learning, Water, 12, 5. 

  2. Altunkaynak, A., 2007, Forecasting surface water level fluctuations of Lake Van by artificial neural networks, Water Resources Management, 21(2), 399-408. 

  3. Castillo, E., Conejo, A.J., Castillo, C., Minguez, R., Ortigosa, D., 2006, Perturbation approach to sensitivity analysis in mathematical programming, Journal of Optimization Theory and Applications, 128, 49-74. 

  4. Chang, F.J., Chen, P.A., Lu, Y.R., Huang, E., Chang, K.Y., 2014, Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control, Journal of Hydrology, 517, 836-846. 

  5. Coulibaly, P., Anctil, F., Aravena, R., Bobee, B., 2001, Artificial neural network modeling of water table depth fluctuations, Water Resources Research, 37(4), 885-896. 

  6. Custodio, E., 2000, The complex concept of overexploited aquifer, Papeles de la Fundacion Marcelino Botin, 1-45. 

  7. Famiglietti, J., 2014, The global groundwater crisis, Nature Climate Change, 4, 945-948. 

  8. Giordano, M., 2009, Global groundwater? Issues and solutions, Annual Review of Environment and Resources, 34, 153-178. 

  9. Hochreiter, S., Schmidhuber, J., 1997, Long short-term memory, Neural Computation, 9, 1735-1780. 

  10. Jeju Province, 2018, Water resources management plan in Jeju Province 2018-2022. 

  11. Jeong, J., Park, E., 2019, Comparative applications of data-driven models representing water table fluctuations, Journal of Hydrology, 572, 261-273. 

  12. Jeong, J., Park, J., Koh, E.H., Park, W.B., Jeong, J., 2022, A study on the hydraulic factors of groundwater level fluctuation by region in Jeju island, The Journal of Engineering Geology, 32(2), 257-270 (in Korean with English abstract). 

  13. Jung, W.Y., Yang, S.K., 2009, Simulation on runoff of rivers in Jeju Island using SWAT model, Journal of the Environmental Science, 18, 1045-1055 (in Korean with English abstract). 

  14. Kenda, K., Cerin, M., Bogataj, M., Senozetnik, M., Klemen, K., Pergar, P., Mladenic, D., 2018, Groundwater modeling with machine learning techniques: Ljubljana polje aquifer, Multidisciplinary Digital Publishing Institute Proceedings, 2(11), 697. 

  15. Kim, G., Lee, K.K., Park, K.S., Hwang, D.W., Yang, H.S., 2003, Large submarine groundwater discharge (SGD) from a volcanic island, Geophysical Research Letters, 30. 

  16. Kim, J., 2021, Current status of Jeju special self-governing province's water infrastructure and direction for improvement, Journal of Korean Society of Water and Wastewater, 35, 497-505 (in Korean with English abstract). 

  17. Kim, M.C., Yang, S.K., 2019, Analysis of groundwater flow characterstics and hydraulic conductivity in Jeju Island using groundwater model, Journal of Environmental Science International, 28(12), 1157-1169 (in Korean with English abstract). 

  18. Kim, N., Na, H., Chung, I.M., Kim, Y., 2014, Empirical formula of delay time for groundwater recharge in the representative watersheds, Jeju Island, Journal of Korea Water Resources Association, 47(9), 743-752 (in Korean with English abstract). 

  19. Lee, S., Jeong, J., Kim, M., Park, W., Kim, Y., Park, J., Park, H., Park, G., Jeong, J., 2021, Data-driven analysis for developing the effective groundwater management system in Daejeong-Hangyeong watershed in Jeju island, Economic and Environmental Geology, 54(3), 373-387 (in Korean with English abstract). 

  20. Liu, D., Li, G., Fu, Q., Li, M., Liu, C., Faiz, M.A., Cui, S., 2018, Application of particle swarm optimization and extreme learning machine forecasting models for regional groundwater depth using nonlinear prediction models as preprocessor, Journal of Hydrologic Engineering, 23(12), 04018052. 

  21. Maier, H.R., Dandy, G.C., 1996, The use of artificial neural networks for the prediction of water quality parameters, Water Resources Research, 32(4), 1013-1022. 

  22. Muller, J., Park, J., Sahu, R., Varadharajan, C., Arora, B., Faybishenko, B., Agarwal, D., 2021, Surrogate optimization of deep neural networks for groundwater predictions, Journal of Global Optimization, 81, 203-231. 

  23. Park, E., Jeong, J., Choung, S., Han, W., Kim, K.Y., S, H., 2021, A method for integrating delayed recharge flux through unsaturated zones into analytical and numerical groundwater flow modeling, Water Resources Research, 57. 

  24. Prabhakaran, V., Hutchinson, B., Mitchell, M., 2019, Perturbation sensitivity analysis to detect unintended model biases, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 5740-5745. 

  25. Shin, K.H., Koo, M.H., Chung, I.M., Kim, N.W., Kim, G.P., 2014, analyzing spatio-temporal variation of groundwater recharge in Jeju Island by using a convolution method, Journal of Environmental Science International, 23(4), 625-635 (in Korean with English abstract). 

  26. Shin, M.J., Moon, S.H., Koh, G.W., Moon, D.C., 2020, Estimation of delay time between precipitation and groundwater level in the middle mountain area of Pyoseon watershed in Jeju Island using moving average method and cross correlation coefficient, Journal of Korea Water Resources Association, 53(7), 553-543 (in Korean with English abstract). 

  27. Siebert, S., Burke, J., Faures, J.M., Frenken, K., Hoogeveen, J., Doell, P., Portmann, F.T., 2010, Groundwater use for irrigation - a global inventory, Hydrology and Earth System Science, 14, 1863-1880. 

  28. Snoek, J., Larochelle, H., Adams, R.P., 2012, Practical Bayesian optimization of machine learning algorithms, Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 2, 2951-2959. 

  29. Taylor, R.G, Scanlon, B., Doell, P., Rodell, M., Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J., Edmunds, M., Konikow, L., Green, T., Chen, J., Taniguchi, M., Bierkens, M.F.P., Macdonald, A., Fan, Y., Maxwell, R., Yechieli, Y., Treidel, H., 2013, Ground water and climate change, Nature Climate Change, 3, 322-329. 

  30. Won, J.H., Lee, J.Y., Kim, J.W., Koh, G.W., 2006, Groundwater occurrence on Jeju Island, Korea, Hydrogeology Journal, 14, 532-547. 

  31. Wunsch, A., Liesch, T., Broda, S., 2018, Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX), Journal of Hydrology, 567, 743-758. 

  32. Yang, S.K, 2007, River management and improvement measured of Jeju island, River & Culture, Korea River Association, 3, 105-115. 

  33. Young, C.C., Liu, W.C., Hsieh, W.L., 2015, Predicting the water level fluctuation in an alpine lake using physically based, artificial neural network, and time series forecasting models, Mathematical Problems in Engineering, 2015, 708204. 

  34. Zhang, J., Zhu, Y., Zhang, X., Ye, M., Yang, J., 2018, Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas, Journal of Hydrology, 561, 918-929. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로