최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기디지털융복합연구 = Journal of digital convergence, v.20 no.2, 2022년, pp.241 - 250
김승훈 (국토연구원) , 이수일 ((주)쿠팡 교통안전본부) , 김태호 ((주) 쿠팡 교통안전기획팀)
Due to the COVID-19 pandemic, with increased 'untact' services and with unstable household economy, the bike insurance fraud is expected to surge. Moreover, the fraud methodology gets complicated. However, the fraud detection model for bike insurance is absent. we deal with the issue of skewed class...
H. W. Byun, J. Y. Son. (2020). Prevention of Insurance Fraud Utilizing Data Analysis. KIRI Report (2020.11.23.), 1-7.
Abdallah, A., Maarof, M. A., & Zainal, A. (2016). Fraud detection system: A survey. Journal of Network and Computer Applications, 68, 90-113.
M. J. Lee, G. Y. Gim. (2007). An Empirical Study on the Development of Behavior Model of Insurance Fraud. Journal of Information Technology Services, 6(2), 1-18.
Roy, R., & George, K. T. (2017). Detecting insurance claims fraud using machine learning techniques. Proceedings of IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2017.
Sithic, H. L., & Balasubramanian, T. (2013). Survey of Insurance Fraud Detection Using Data Mining Techniques. International Journal of Innovative Technology and Exploring Engineering, 2(3), 62-65.
Wen, C.-H., Wang, M.-J., & Lan, L. W. (2005). Discrete choice modeling for bundled automobile insurance policies. Journal of the Eastern Asia Society for Transportation Studies, 6. 1914-1928.
Artis, M., Ayuso, M., & Guillen, M. (2002). Detection of Automobile Insurance Fraud With Discrete Choice Models and Misclassified Claims. The Journal of Risk and Insurance, 69(3), 325-340.
H. G. Jo. (1990). The Cause of Insurance Fraud And Countermeasures. Korean Journal of Insurance, 35, 75-102
H. G. Jo. (2001). Countermeasures of Insurance Fraud For Nation. Journal of Insurance Studies, 12(2).
T. K. Sung. (2003). Detection of Insurance Fraud using Visualization Data Mining Tool. Information System Review, 5(1), 49-60.
C. Y. Kim. (1996). Case Study of the Type of Car Insurance Frauds, General Insurance Association of Korea, 328, 43-61.
Y. J. Kim. (1998). Case Study of Car Insurance for Moral Hazard, General Insurance, 359, 60-71.
G. Y. Gim. (1996). Developing Early Detecting Insurance Fraud System: Fuzzy Theory and AHP, Insurance Development Studies, 18, 4-28.
H. S. Kim. (1999). Brief Study of The Development of Automobile insurance Fraud Early-Warning model, General Insurance, 363, 68-80.
H. S. Kim. (2000). A Study on The Development of Automobile insurance Fraud Early-Warning model using Claim Adjusters' Expert knowledge. The Journal of Risk management, 16, 59-97.
J. D. Kim, J. S. Park. (2006). A Fraud Detection Model for Automobile Insurance Claims. Risk Management. 17(1), 109-152.
T. H. Kim, J. I. Lim. (2020). A Study on Conspired Insurance Fraud Detection Modeling Using Social Network Analysis, Journal of the Korea Society of Computer and Information, 25(3), 117-127.
Martino Scheepens. (retrieved on 11.30.2021). Coronavirus, what have you done?. FRISS. https://www.friss.com/blog/coronavirus-what-have-you-done/
Matthew J. Smith. (retrieved on 11.30.2021). Insurance Fraud Report (2020). https://knowledge.friss.com/hubfs/Ebooks/Insurance%20Fraud%20Report%202020-2021%20EN.pdf?utm_campaignFraud%20Survey&utm_mediumemail&_hsmi98996085&_hsencp2ANqtz-9b05tppFd4OvW5Pgn40Us4ktpp0dXzleaTZb8IQV2-j9muWaPkF6WLs3jg2XUdudg0gUyFbZtE6ldFqd8yLfN59MVHA&utm_content98996085&utm_sourcehs_automation
Fernandez, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial Intelligence Research, 61, 863-905.
Brennan, P. (2012). A comprehensive survey of methods for overcoming the class imbalance problem in fraud detection. Thesis, (June), 1-107.
Subelj, L., Furlan, S., & Bajec, M. (2011). An expert system for detecting automobile insurance fraud using social network analysis. Expert Systems with Applications, 38(1), 1039-1052.
Fiorentini, N., & Losa, M. (2020). Handling Imbalanced Data in Road Crash Severity Prediction by Machine Learning Algorithms. Infrastructures, 5(7).
Chen, C., Liaw, A., & Breiman, L. (2004). Using Random Forest to Learn Imbalanced Data. In Department of Statistics, UC berkeley.
Brockett, P. L., Derrig, R. a, Golden, L. L., & Alpert, M. (2002). Fraud Classification Using Principal Component Analysis of RIDITs. The Journal of Risk and Insurance, 69(3), 341-371.
Viaene, S., Ayuso, M., Guillen, M., Van Gheel, D., & Dedene, G. (2007). Strategies for detecting fraudulent claims in the automobile insurance industry. European Journal of Operational Research, 176(1), 565-583.
Agjee, N. H., Mutanga, O., Peerbhay, K., & Ismail, R. (2018). The impact of simulated spectral noise on random forest and oblique random forest classification performance. Journal of Spectroscopy. 2018.8
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.