$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 균형 랜덤 포레스트를 이용한 이륜차 보험사기 적발 모형 개발
Bike Insurance Fraud Detection Model Using Balanced Randomforest Algorithm 원문보기

디지털융복합연구 = Journal of digital convergence, v.20 no.2, 2022년, pp.241 - 250  

김승훈 (국토연구원) ,  이수일 ((주)쿠팡 교통안전본부) ,  김태호 ((주) 쿠팡 교통안전기획팀)

초록
AI-Helper 아이콘AI-Helper

COVID-19 여파로 인한 비대면 서비스와 가정 재정 불안정성의 증가로 이륜차 보험사기 발생이 예상되고 있다. 이와 함께 보험사기 수법도 갈수록 교묘해지고 있다. 하지만 비대면 배달 수요와 연관된 이륜차 교통사고와 보험사기 적발 모형 관련 연구는 매우 미흡한 실정이다. 이에 본 연구는 보험사기의 표본 편중문제를 해결하기 위해 균형 랜덤포레스트 알고리즘을 이용하고 보험사기 조사 전문가의 정성적인 판단 기준을 반영한 변수를 모델에 포함하여 적용성을 향상시키며 적발력 높은 이륜차 보험사기 모형을 개발하고자 한다. 보험사기 적발 모형 개발 결과, 기존의 비균형 랜덤 포레스트 모형에 비해 균형 랜덤 포레스트가 보험 사기혐의자를 분류하는 데 있어 통계적으로 우수한 점을 확인할 수 있었다. 특히, 총 26개의 변수를 토대로 탐색적 변수 조합을 적용한 모형의 예측 성능이 가장 높았지만 일부 변수만을 사용한 확인적 모형의 예측 성능도 크게 떨어지지 않은 와중에, 정성적인 보험사기 전문가가 선정한 변수만을 사용한 확인적 모형은 예측력이 떨어지는 것을 확인하였다. 또한, 총 26개의 변수 중 운전자 성별, 연령, 운전자 피보험자 일치 여부, 미수선 청구금액, 대인보험금 등이 중요한 변수로 확인되어 이를 활용해 이륜차 보험사기 혐의자 선별을 위한 적극적인 대처가 필요해 보인다.

Abstract AI-Helper 아이콘AI-Helper

Due to the COVID-19 pandemic, with increased 'untact' services and with unstable household economy, the bike insurance fraud is expected to surge. Moreover, the fraud methodology gets complicated. However, the fraud detection model for bike insurance is absent. we deal with the issue of skewed class...

Keyword

표/그림 (7)

참고문헌 (28)

  1. H. W. Byun, J. Y. Son. (2020). Prevention of Insurance Fraud Utilizing Data Analysis. KIRI Report (2020.11.23.), 1-7. 

  2. Abdallah, A., Maarof, M. A., & Zainal, A. (2016). Fraud detection system: A survey. Journal of Network and Computer Applications, 68, 90-113. 

  3. M. J. Lee, G. Y. Gim. (2007). An Empirical Study on the Development of Behavior Model of Insurance Fraud. Journal of Information Technology Services, 6(2), 1-18. 

  4. Roy, R., & George, K. T. (2017). Detecting insurance claims fraud using machine learning techniques. Proceedings of IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2017. 

  5. Sithic, H. L., & Balasubramanian, T. (2013). Survey of Insurance Fraud Detection Using Data Mining Techniques. International Journal of Innovative Technology and Exploring Engineering, 2(3), 62-65. 

  6. Wen, C.-H., Wang, M.-J., & Lan, L. W. (2005). Discrete choice modeling for bundled automobile insurance policies. Journal of the Eastern Asia Society for Transportation Studies, 6. 1914-1928. 

  7. Artis, M., Ayuso, M., & Guillen, M. (2002). Detection of Automobile Insurance Fraud With Discrete Choice Models and Misclassified Claims. The Journal of Risk and Insurance, 69(3), 325-340. 

  8. H. G. Jo. (1990). The Cause of Insurance Fraud And Countermeasures. Korean Journal of Insurance, 35, 75-102 

  9. H. G. Jo. (2001). Countermeasures of Insurance Fraud For Nation. Journal of Insurance Studies, 12(2). 

  10. T. K. Sung. (2003). Detection of Insurance Fraud using Visualization Data Mining Tool. Information System Review, 5(1), 49-60. 

  11. C. Y. Kim. (1996). Case Study of the Type of Car Insurance Frauds, General Insurance Association of Korea, 328, 43-61. 

  12. Y. J. Kim. (1998). Case Study of Car Insurance for Moral Hazard, General Insurance, 359, 60-71. 

  13. G. Y. Gim. (1996). Developing Early Detecting Insurance Fraud System: Fuzzy Theory and AHP, Insurance Development Studies, 18, 4-28. 

  14. H. S. Kim. (1999). Brief Study of The Development of Automobile insurance Fraud Early-Warning model, General Insurance, 363, 68-80. 

  15. H. S. Kim. (2000). A Study on The Development of Automobile insurance Fraud Early-Warning model using Claim Adjusters' Expert knowledge. The Journal of Risk management, 16, 59-97. 

  16. J. D. Kim, J. S. Park. (2006). A Fraud Detection Model for Automobile Insurance Claims. Risk Management. 17(1), 109-152. 

  17. T. H. Kim, J. I. Lim. (2020). A Study on Conspired Insurance Fraud Detection Modeling Using Social Network Analysis, Journal of the Korea Society of Computer and Information, 25(3), 117-127. 

  18. Martino Scheepens. (retrieved on 11.30.2021). Coronavirus, what have you done?. FRISS. https://www.friss.com/blog/coronavirus-what-have-you-done/ 

  19. Matthew J. Smith. (retrieved on 11.30.2021). Insurance Fraud Report (2020). https://knowledge.friss.com/hubfs/Ebooks/Insurance%20Fraud%20Report%202020-2021%20EN.pdf?utm_campaignFraud%20Survey&utm_mediumemail&_hsmi98996085&_hsencp2ANqtz-9b05tppFd4OvW5Pgn40Us4ktpp0dXzleaTZb8IQV2-j9muWaPkF6WLs3jg2XUdudg0gUyFbZtE6ldFqd8yLfN59MVHA&utm_content98996085&utm_sourcehs_automation 

  20. Fernandez, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial Intelligence Research, 61, 863-905. 

  21. Brennan, P. (2012). A comprehensive survey of methods for overcoming the class imbalance problem in fraud detection. Thesis, (June), 1-107. 

  22. Subelj, L., Furlan, S., & Bajec, M. (2011). An expert system for detecting automobile insurance fraud using social network analysis. Expert Systems with Applications, 38(1), 1039-1052. 

  23. Fiorentini, N., & Losa, M. (2020). Handling Imbalanced Data in Road Crash Severity Prediction by Machine Learning Algorithms. Infrastructures, 5(7). 

  24. Chen, C., Liaw, A., & Breiman, L. (2004). Using Random Forest to Learn Imbalanced Data. In Department of Statistics, UC berkeley. 

  25. Ai, J., Golden, L. L., & Brockett, P. L. (2009). Assessing Consumer Fraud Risk in Insurance Claims. North American Actuarial Journal, 13(4), 438-458. 

  26. Brockett, P. L., Derrig, R. a, Golden, L. L., & Alpert, M. (2002). Fraud Classification Using Principal Component Analysis of RIDITs. The Journal of Risk and Insurance, 69(3), 341-371. 

  27. Viaene, S., Ayuso, M., Guillen, M., Van Gheel, D., & Dedene, G. (2007). Strategies for detecting fraudulent claims in the automobile insurance industry. European Journal of Operational Research, 176(1), 565-583. 

  28. Agjee, N. H., Mutanga, O., Peerbhay, K., & Ismail, R. (2018). The impact of simulated spectral noise on random forest and oblique random forest classification performance. Journal of Spectroscopy. 2018.8 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로