$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수력발전댐에서 온실가스 연구 동향 분석 : 국외 사례를 중심으로
Analysis of Greenhouse Gas Research Trends of Hydropower Dams: Focusing on Foreign Cases 원문보기

Journal of environmental science international = 한국환경과학회지, v.31 no.2, 2022년, pp.195 - 213  

박경덕 (부경대학교 지질환경연구소) ,  조원기 (부경대학교 지질환경연구소) ,  소윤환 (부경대학교 지질환경연구소) ,  강동환 (부경대학교 지질환경연구소)

Abstract AI-Helper 아이콘AI-Helper

This research summarizes the generating factors of greenhouse gas (carbon dioxide, methane, nitrous oxide) in hydropower dams and related domestic/foreign researches. Microorganisms and eutrophication are the main factors in greenhouse gases in hydropower dam reservoirs. The greenhouse gas emission ...

주제어

참고문헌 (85)

  1. Abe, D. S., Sidagis-Galli, C., Tundisi, T. M., Tundisi, J. E. M., Grimberg, D. E., Medeiros, G. R., Teixeira-Silva, V., Tundisi, J. G., 2009, The effect of eutrophication on greenhouse gas emissions in three reservoirs of the Middle Tiete River, southeastern Brazil, Verh. lnternat. Verein. Limnol., 30, 822-825. 

  2. Ahn, C. Y., Chung, A. S., Oh, H. M., 2002, Rainfall, phycocyanin, and N:P ratios related to cyanobacterial blooms in a Korean large reservoir, Hydrobiologia, 474, 117-124. 

  3. Ai, H., Qiu, Y., He, Q., He, Y., Yang, C., Kang, L., Luo, H., Li, W., Mao, Y., Hu, M., Li, H., 2019, Turn the potential greenhouse gases into biomass in harmful algal blooms waters: a microcosm study, Sci. Total Environ., 655, 520-528. 

  4. An, K. G., Jones, J. R., 2000, Factors regulation bluegreen dominance in a reservoir directly influenced by the Asian monsoon. Hydrobiologia, 432, 37-48. 

  5. Baek, J. S., Youn, S. J., Kim, H. N., Sim, Y. B., Yoo, S. J., Im, J. K., 2019, Effects of environmental factors on phytoplankton succession and community structure in Lake Chuncheon, Korean J. Environ. Ecol., 52, 71-80. 

  6. Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., Enrich-Prast, A., 2011, Freshwater methane emissions offset the continental carbon sink. Science 331, 50. 

  7. Bates, B., Kundzewicz, Z. W., Wu, S., Palutikof, J., 2008, Climate change and water - IPCC Technical Paper VI, IPCC Secretariat, Geneva. 

  8. Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Mulholland, P. J., Peterson, B. J., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Grimm, N. B., Johnson, S. L., McDowell, W. H., Poole, G. C., Valett, H. M., Arango, C. P., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Helton, A. M., Johnson, L. T., O'Brien, J. M., Potter, J. D., Sheibley, R. W., Sobota, D. J., Thomas, S. M., 2011, Nitrous oxide emission from denitrification in stream and river networks, Proc. Natl. Acad. Sci., 108, 214-219. 

  9. Bevelhimer, M. S., Stewart, A. J., Fortner, A. M., Phillips, J. R., Mosher, J. J., 2016, CO 2 is dominant greenhouse gas emitted from six hydropower reservoirs in southeastern United States during peak summer emissions, Water, 8, 15. 

  10. Bizic, M., Klintzsch, T., Ionescu, D., Hindiyeh, M. Y., Gunthel, M., Muro-Pastor, A. M., Eckert W., Urich, T., Keppler, F., 2020, Aquatic and terrestrial cyanobacteria produce methane, Sci. Adv., 6, eaax5343. 

  11. Bothe, H., Schmitz, O., Yates, M. G., Newton, W. E., 2010, Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria, Microbiol. Mol. Biol. Rev., 74, 529-551. 

  12. Burlacot, A., Richaud, P., Gosset, A., Li-Beisson, Y., Peltier, G., Algal photosynthesis converts nitric oxide into nitrous oxide, PNAS, 117, 2704-2709. 

  13. Calhoun, A., King, G. M., 1997, Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes, Appl. Environ. Microbiol., 63, 3051-3058. 

  14. Chen, M., Chang, L., Zhang, J., Guo, F., Vymazal, J., He, Q., Chen, Y., 2020, Global nitrogen input on wetland ecosystem: The driving mechanism of soil labile carbon and nitrogen on greenhouse gas emissions, Environ Sci Ecotechnol., 4, 100063. 

  15. Chung, H., Son, M., Ryu, H. S., Park, C. H., Lee, R., Cho, M., Lim, C., Park, J., Kim, K., 2019, Variation of cyanobacteria occurrence pattern and environmental factors in Lake Juam, Korean J. Environ. Biol., 37, 640-651. 

  16. Chungbuk National University, 2019, Development and Applications of AI/ML Models for Estimating Carbon Net Atmospheric Flux from Reservoir. 

  17. Dakos, V., Matthews, B., Hendry, A. P., Levine, J., Loeuille, N., Norberg, J., Loeuille, N., Norberg, J., Nosil, P., Scheffer, M., De Meester, L., 2019, Ecosystem tipping points in an evolving world, Nat. Ecol. Evol., 3, 355-362. 

  18. Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., DelSontro, T., Barros, N., Bezerra-Neto, J. F., Powers, S. M., Dos Santos, M. A., Arie Vonk, J., 2016, Greenhouse gas emissions from reservoir water surfaces; A new global synthesis, BioScience, 66, 949-964. 

  19. Demarty, M., Bastien, J., Tremblay, A., Hesslein, R. H., Gill, R., 2009, Greenhouse gas emissions from boreal reservoirs in Manitoba and Que'bec, Canada, measured with automated systems, Environ. Sci. Technol., 43, 8908-8915. 

  20. Dos Santos, M. A., Rosa, L. P., Sikar, B., Sikar, E., Dos Santos, E. O., 2006, Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants, Energy Policy, 34, 481-488. 

  21. Duchemin, E., Lucotte, M., Canuel, R., 1999, Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies, Environ. Sci. Technol., 33, 350-357. 

  22. Duchemin, E., Lucotte, M., Canuel, R., Chamberland, A., 1995, Production of the greenhouse gases CH 4 and CO 2 by hydroelectric reservoirs of the boreal region. Global Biogeochem. Cycles, 9, 529-540. 

  23. Fearnside, P. M., 1997, Greenhouse-gas emissions from Amazonian hydroelectric reservoirs the example of Brazil's Tucurui Dam as compared to fossil fuel alternatives, Environ. Conserv., 24, 64-75. 

  24. Fearnside, P. M., 2004, Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly 'clean' energy source an editorial comment, Clim. Change, 66, 1-8. 

  25. Galy-Lacaux, C., Delmas, R., Jambert, C., Dumestre, J. F., Labroue, L., Richard, S., Gosse, P., 1997, Gaseous emissions and oxygen consumption in hydroelectric dams: A case study in French Guyana, Global Biogeochem. Cycles, 11, 471-483. 

  26. GDW, 2019, Global Reservoir and Dam Database (GRanD), http://globaldamwatch.org/grand. 

  27. Giles, J., Methane quashes green credentials of hydropower, Nature, 444, 524-525. 

  28. Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., Watson, S. W., 1980, Production of N 2 O - and N 2 O by nitrifying bacteria at reduced concentrations of oxygen, Appl. Environ. Microbiol., 40, 526-532. 

  29. Guerin, F., Abril, G., Tremblay, A., Delmas, R., 2008, Nitrous oxide emissions from tropical hydroelectric reservoirs, Geophys. Res. Lett., 35, L06404. 

  30. Gunkel, G., 2009, Hydropower - A green energy? Tropical reservoirs and greenhouse gas emissions, Clean - Soil Air Water, 37, 726-734. 

  31. Hertwich, E. G., 2013, Addressing biogenic greenhouse gas emissions from hydropower in LCA, Environ. Sci. Technol., 47, 9604-9611. 

  32. Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., Silvola, J., Martikainen, P. J., 2003, Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions, Chemosphere, 52, 609-621. 

  33. Huttunen, J. T., Vaisanen, T. S., Hellsten, S. K., Heikkinen, M., Nykanen, H., Jungner, H., Niskanen, A., Virtanen, M. O., Lindqvist, O. V., Nenonen, O. S., Martikainen, P. J., 2002, Fluxes of CH 4 , CO 2 , and N 2 O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland, Global Biogeochem. Cycles, 16, 3-1-3-17. 

  34. Ho, D. T., Bliven, L. F., Wanninkhof, R., Schlosser, P., 1997, The effect of rain on air-water gas exchange, Tellus B, 49, 149-158. 

  35. IEA, 2021, Hydropower Special Market Report - Analysis and forecast to 2030, IEA Publications, Paris, https://www.iea.org/reports/hydropower-special-market-report. 

  36. Ion, I. V., Ene, A., 2021, Evaluation of Greenhouse Gas Emissions from Reservoirs: A Review, Sustainability, 13, 11621. 

  37. Jin, H., Yoon, T. K., Lee, S. H., Kang, H., Im, J., Park, J. H., 2016, Enhanced greenhouse gas emission from exposed sediments along a hydroelectric reservoir during an extreme drought event, Environ. Res. Lett., 11, 124003. 

  38. Jin, H., Yoon, T. K., Begum, M. S., Lee, E. J., Oh, N. H., Kang, N., Park, J. H., 2018, Longitudinal discontinuities in riverine greenhouse gas dynamics generated by dams and urban wastewater, Biogeosciences, 15, 6349-6369. 

  39. Kahrl, F., Li, Y., Su, Y., Tennigkeit, T., Wilkes, A., Xu, J., 2010, Greenhouse gas emissions from nitrogen fertilizer use in China, Environ. Sci. Policy, 13, 688-694. 

  40. Kamp, A., Stief, P., Knappe, J., De Beer, D., 2013, Response of the ubiquitous pelagic diatom Thalassiosira weissflogii to darkness and anoxia. PLoS One, 8, e0082605. 

  41. Kangwon National University, 2018, The influence of monsoon climate on the emissions of greenhouse gases (CH 4 and CO 2 ) and phosphorus mobility in a reservoir system. 

  42. Keller, M., Stallard, R. F., 1994, Methane emission by bubbling from Gatun Lake, Panama, J. Geophys. Res. Atmos., 99, 8307-8319. 

  43. KNCOLD, 2021, http://www.kncold.or.kr/. 

  44. Kumar, A., Sharma, M. P., 2012, Greenhouse gas emissions from hydropower reservoirs, J. Water Energy Environ., 11, 37-42. 

  45. Laanbroek, H. J., 2010, Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review, Ann. Bot., 105, 141-153. 

  46. Lee, H. M., Shin, R. Y., Lee, J. H., Park, J. G., 2019, A study on the relationship between cyanobacteria and environmental factors in Yeongcheon Lake, J. Korean Soc. Water Environ., 35, 352-361. 

  47. Li, S., Bush, R. T., Santos, I. R., Zhang, Q., Song, K., Mao, R., Wen, Z., Lu, X. X., 2018. Large greenhouse gases emissions from China's lakes and reservoirs, Water Res., 147, 13-24. 

  48. Lima, I. B. T., Victoria, R. L., Novo, E. M. L. M., Feigl, B. J., Ballester, M. V. R., Ometto, J. P., 2002, Methane, carbon dioxide and nitrous oxide emissions from two Amazonian Reservoirs during high water table, Verh. lnternat. Verein. Limnol., 28, 438-442. 

  49. Liu, X., Zhang, F., 2011, Nitrogen fertilizer induced greenhouse gas emissions in China, Curr. Opin. Environ. Sustain., 3, 407-413. 

  50. Maavara, T., Chen, Q., Van Meter, K., Brown, L. E., Zhang, J., Ni, J., Zarfl, C., 2020, River dam impacts on biogeochemical cycling, Nat. Rev. Earth Environ., 1, 103-116. 

  51. Makinen, K., Khan, S., 2010, Policy considerations for greenhouse gas emissions from freshwater reservoirs, Water Altern., 3, 91-105. 

  52. Mann, K. H., Williams, W. D., 2014, Inland water ecosystem Encyclopedia Britannica, https://www.britannica.com/science/inland-water-ecosystem. 

  53. Mosher, J. J., Fortner, A. M., Phillips, J. R., Bevelhimer, M. S., Stewart, A. J., Troia, M. J., 2015, Spatial and temporal correlates of greenhouse gas diffusion from a hydropower reservoir in the southern United States, Water 7, 5910-5927. 

  54. Musenze, R. S., Fan, L., Grinham, A., Werner, U., Gale, D., Udym J., Yuan, Z., 2016, Methane dynamics in subtropical freshwater reservoirs and the mediating microbial communities, Biogeochemistry, 128, 233-255. 

  55. Noh, S. Y., Park, H. K., Choi, H. L., Lee, J. A., 2014, Effect of Climate Change for Cyanobacteria Growth Pattern in Chudong Station of Lake Daechung, J. Korean Soc. Water Environ., 30, 377-385. 

  56. OECD, 2020, Environment at a Glance 2020, OECD Publishing, Paris. 

  57. Plouviez, M., Shilton, A., Packer, M. A., Guieysse, B., 2019, Nitrous oxide emissions from microalgae: potential pathways and significance, J. Appl. Phycol., 31, 1-8. 

  58. Prairie, Y. T., Alm, J., Beaulieu, J., Barros, N., Battin, T., Cole, J., Del Giorgio, P., DelSontro, T., Guerin, F., Harby, A., Harrison, J., Mercier-Blais, S., Serca, D., Sobek, S., Vachon, D., 2017, Greenhouse gas emissions from freshwater reservoirs: What does the atmosphere see?, Ecosyst., 21, 1058-1071. 

  59. Rasanen, T. A., Varis, O., Scherer, L., Kummu, M., 2018, Greenhouse gas emissions of hydropower in the Mekong River Basin, Environ. Res. Lett., 13, 034030. 

  60. Richardson, D., Felgate, H., Watmough, N., Thomson, A., Baggs, E., 2009, Mitigating release of the potent greenhouse gas N 2 O from the nitrogen cycle - could enzymic regulation hold the key?, Trends Biotechnol., 27, 388-397. 

  61. Rosa, L. P., Dos Santos, M. A., Matvienko, B., Sikar, E., Dos Santos, E. O., 2006, Scientific errors in the fearnside comments on greenhouse gas emissions (GHG) from hydroelectric dams and response to his political claiming, Clim. Change, 75, 91-102. 

  62. Rudd, J. W. M., Hamilton, R. D., 1978, Methane cycling in a cutrophic shield lake and its effects on whole lake metabolism. Limnol. Oceanogr., 23, 337-348. 

  63. Shi, W., Chen, Q., Zhang, J., Liu, D., Yi, Q., Chen, Y., Ma, H., Hu, L., 2020, Nitrous oxide emissions from cascade hydropower reservoirs in the upper Mekong River, Water Res., 173, 115582. 

  64. Shi, W., Du, M., Ye, C., Zhang, Q., 2021, Divergent effects of hydrological alteration and nutrient addition on greenhouse gas emissions in the water level fluctuation zone of the Three Gorges Reservoir, China, Water Res., 201, 117308. 

  65. Song, C., Zhang, J., Wang, Y., Wang, Y., Zhao, Z., 2008, Emission of CO 2 , CH 4 and N 2 O from freshwater marsh in northeast of China, J. Environ. Manage., 88, 428-436. 

  66. St. Louis, V. L., Kelly, C. A., Duchemin, E., Rudd, J. W. M., Rosenberg, D. M., 2000, Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate, BioScience, 50, 766-775. 

  67. Tremblay, A., Varfalvy, L., Garneau, M., 2004, The issue of greenhouse gases from hydroelectric reservoir; From boreal to tropical regions, The United Nations Symposium on Hydropower and Sustainable Development, Beijing, China. 

  68. Tremblay, A., Varfalvy, L., Roehm, C., Garneau, M., 2004, Greenhouse gas emission - Fluxs and processes, Springer, Germany. 

  69. Tsai, D. D. W., Chen, P. H., Ramaraj, R., 2017, The potential of carbon dioxide capture and sequestration with algae, Ecol. Eng., 98, 17-23. 

  70. UNESCO, IHA, 2010, GHG measurement guidelines for freshwater reservoirs, IHA, UK. 

  71. WAMIS, 2021, http://wamis.go.kr/. 

  72. Wang, F., Cao, M., Wang, B., Fu, J., Luo, W., Ma, J., 2015, Seasonal variation of CO 2 diffusion flux from a large subtropical reservoir in East China, Atmos. Environ., 103, 129-137. 

  73. Wang, F., Wang, B., Liu, C. Q., Wang, Y., Guan, J., Liu, X., Yu, Y., 2011, Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River, southwest of China, Atmos. Environ., 45, 3827-3834. 

  74. Wanninkhof, R., Bliven, L. F., 1991, Relationship between gas exchange, wind speed, and radar backscatter in a large wind-wave tank, J. Geophys. Res. Oceans, 96, 2785-2796. 

  75. Wanninkhof, R., McGillis, W. R., 1999, A cubic relationship between air-sea CO 2 exchange and wind speed, Geophys. Res. Lett., 26, 1889-1892. 

  76. Weathers, P. J., Niedzielski, J. J., 1986, Nitrous oxide production by cyanobacteria, Arch. Microbiol., 146, 204-206. 

  77. West, W. E., Coloso, J. J., Jones, S. E., 2012, Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment, Freshw. Biol., 57, 949-955. 

  78. Whiting, G. J., Chanton, J. P., 1993, Primary production control of methane emission from wetlands, Nature, 364, 794-795. 

  79. Xiao, Q., Hu, Z., Fu, C., Bian, H., Lee, X., Chen, S., Shang, D., 2019, Surface nitrous oxide concentrations and fluxes from water bodies of the agricultural watershed in Eastern China, Environ. Pollut., 251, 185-192. 

  80. Xing, P., Guo, L., Tian, W., Wu, Q. L., 2011, Novel Clostridium populations involved in the anaerobic degradation of Microcystis blooms, ISME J., 5, 792-800. 

  81. Yan, X., Xu, X., Ji, M., Zhang, Z., Wang, M., Wu, S., Wang, G., Zhang, C., Liu, H., 2019, Cyanobacteria blooms: A neglected facilitator of CH 4 production in eutrophic lakes, Sci. Total Environ., 651, 466-474. 

  82. Yang, H., Andersen, T., Dorsch, P., Tominaga, K., Thrane, J. E., Hessen, D. O., 2015, Greenhouse gas metabolism in Nordic boreal lakes. Biogeochemistry 126, 211-225. 

  83. Yang, D., Mao, X., Wei, X., Tao, Y., Zhang, Z., Ma, J., 2019, Water air interface greenhouse gas emissions (CO2, CH 4 , and N 2 O) emissions were amplified by continuous dams in an urban river in Qinghai - Tibet Plateau, China, Water, 12, 759. 

  84. Yang, D., Mao, X., Wei, X., Tao, Y., Zhang, Z., Ma, J., Water-air interface greenhouse gas emissions (CO 2 , CH 4 , and N 2 O) emissions were amplified by continuous dams in Qinghai-Tibet Plateau, China, Water, 12, 759. 

  85. Yeon, I., Hong, J., Hong, E., Lim, B., 2010, The characteristics and correlation analyses of chlorophyll-a data monitored continuously in Daecheong Reservoir, J. Korean Soc. Water Environ., 26, 994-999. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로