$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수정된 직접 전단 시험기를 이용한 모래와 표면 돌출부를 갖는 플레이트 사이의 마찰 이방성에 대한 연구
A Study on Friction Anisotropy between Sand and Surface Asperities of Plate Using Modified Direct Shear Test 원문보기

韓國地盤工學會論文集 = Journal of the Korean geotechnical society, v.38 no.2, 2022년, pp.29 - 38  

이승훈 (순천대학교 토목공학과) ,  정성훈 (순천대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

마찰 방향에 따른 전단 저항의 이방성을 지반 구조물에서 선택적으로 이용할 수가 있다. 예를 들어서, 축방향으로 하중을 가하는 깊은 기초, 소일 네일링, 타이백 등은 큰 전단 저항이 유발되므로 하중 전달 능력을 증가시키지만, 이와 반대로 말뚝 관입과 흙 시료 채취 등은 최소화된 전단 저항만 유발된다. 기존 연구는 뱀 비늘의 기하학적 형상과 유사한 표면 돌출부를 갖는 플레이트와 흙 경계면에서 유발되는 전단 저항 변화를 확인하였다. 본 논문에서는 표면 돌출부의 형상에 따른 경계면 마찰각의 변화를 정량적으로 평가하였다. 수정된 직접 전단 시험기를 이용하여 상대 밀도가 40%로 조성된 모래 시료에 대해 9개의 플레이트, 2개의 전단 방향(전단 시 돌출부 높이가 증가와 감소하는 방향), 그리고 3개의 초기 수직 응력(100kPa, 200kPa, 300kPa) 조건으로 총 51가지 경우를 실험 하였다. 실험 결과, 전단 응력은 돌출부 높이가 높을수록, 돌출부 길이가 짧을수록, 돌출부 높이가 증가하는 전단 방향에서 크게 나타났다.

Abstract AI-Helper 아이콘AI-Helper

The friction anisotropy of shear resistance can be selectively used in geo-structures. For example, larger axially loaded deep foundation, soil nails, and tiebacks increase load carrying capacity due to induced large shear resistance while pile penetration and soil sampling produce minimal shear res...

주제어

표/그림 (10)

참고문헌 (16)

  1. ASTM Standard D 3080-04. (2004), Standard test method for direct shear test under consolidated drained condition, Annual Book of ASTM Standard, Vol.04.08, ASTM International, West Conshohocken, PA. 

  2. Bae, J., Lee, J., Shin, S., and Kim, D. (2020), "Analysis of Vertical and Horizontal Behavior of Helical Piles in Sands Varying Helix Shapes and Locations", Journal of the Korean Society of Civil Engineers, Vol.40, No.4, pp.393-400. 

  3. Bak, J., Lee, K., Choi , B.-H., and Ki m, D. (2019), "Numeri cal Analysis of Helical Pile Behavior Varying Number and Diameter of Helices", Journal of the Korean Society of Civil Engeneers, Vol.39, No.1, pp.211-217. 

  4. DeJong, J. T., Burrall, M., Wilson, D. W., and Frost, J. D. (2017), "A Bio-Inspired Perspective for Geotechnical Engineering Innovation", Geotechnical Frontiers 2017, pp.862-870. 

  5. Elkasabgy, M. and El Naggar, M. H. (2014), "Axial Compressive Response of Large-capacity Helical and Driven Steel Piles in Cohesive Soil", Canadian Geotechnical Journal, Vol.52, No.2, pp.224-243. 

  6. Elsherbiny, Z. H. and El Naggar, M. H. (2013), "Axial Compressive Capacity of Helical Piles from Field Tests and Numerical Study", Canadian Geotechnical Journal, Vol.50, No.12, pp.1191-1203. 

  7. Hong, Y.-H., Byun, Y.-H., Chae, J.-G., and Lee, J.-S. (2015), "Shear Behavior of Sands Depending on Shear Box Type in Direct Shear Test", Journal of the Korean Geotechnical Society, Vol.31, No.3, pp.51-62. 

  8. Kim, B.-S., Shibuya, S., Park, S.-W., and Kato, S. (2012), "Effect of Opening on the Shear behavior of Granular Materials in Direct Shear Test", KSCE Journal of Civil Engineering, Vol.16, No.7, pp.1132-1142. 

  9. Lee, D., Na, K., Lee, W., Kim, H.-N., and Choi, H. (2014), "Applicability of Bi-directional Load Test for Evaluating Bearing Capacity of Helical Piles", Journal of Korean Geosynthetics Society, Vol.13, No.4, pp.77-85. 

  10. Martinez, A., DeJong, J., Akin, I., Aleali, A., Arson, C., Atkinson, J., Bandini, P., Baser, T., Borela, R., Boulanger, R., Burrall, M., Chen, Y., Collins, C., Cortes, D., Dai, S., DeJong, T., Dottore, E. D., Dorgan, K., Fragaszy, R., Frost, J. D., Full, R., Ghayoomi, M., Goldman, D. I., Gravish, N., Guzman, I. L., Hambleton, J., Hawkes, E., Helms, M., Hu, D., Huang, L., Huang, S., Hunt, C., Irschick, D., Lin, H. T., Lingwall, B., Marr, A., Mazzolai, B., McInroe, B., Murthy, T., O'Hara, K., Porter, M., Sadek, S., Sanchez, M., Santamarina, C., Shao, L., Sharp, J., Stuart, H., Stutz, H. H., Summers, A., Tao, J., Tolley, M., Treers, L., Turnbull, K., Valdes, R., Paassen, L. v., Viggiani, G., Wilson, D., Wu, W., Yu, X., and Zheng, J. (2021), "Bio-inspired Geotechnical Engineering: Principles, Current Work, Opportunities and Challenges", In press for publication in Geotechnique, pp.1-19. 

  11. Martinez, A., DeJong, J. T., Jaeger, R. A., and Khosravi, A. (2020), "Evaluation of Self-penetration Potential of a Bio-inspired Site Characterization Probe by Cavity Expansion Analysis", Canadian Geotechnical Journal, Vol.57, No.5, pp.706-716. 

  12. Martinez, A., Palumbo, S., and Todd Brian, D. (2019), "Bioinspiration for Anisotropic Load Transfer at Soil-Structure Interfaces", Journal of Geotechnical and Geoenvironmental Engineering, Vol.145, No.10, 04019074. 

  13. O'Hara Kyle, B. and Martinez, A. (2020), "Monotonic and Cyclic Frictional Resistance Directionality in Snakeskin-Inspired Surfaces and Piles", Journal of Geotechnical and Geoenvironmental Engineering, Vol.146, No.11, 04020116. 

  14. Shibuya, S., Koseki, J., and Kawaguchi, T. (2005), "Recent Developments in Deformation and Strength Testing of Geomaterials", Deformation Characteristics of Geomaterials: Recent Investigations and Prospects, pp.3-26. 

  15. Stutz, H. H., Martinez, A., Heepe, L., Tram Tramsen, H., and Gorb, S. N. (2019), "Strength anisotropy at soil-structure interfaces with snake skin inspired structural surfaces", E3S Web Conf. 92, article 13008. 

  16. Takada, N. (1993), "Mikasa's Direct Shear Apparatus, Test Procedures and Results", Geotechnical Testing Journal, Vol.16, No.3, pp.314-322. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로