$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 암반 그라우팅 주요 계획인자의 기준값에 관한 기초연구
A Fundamental Study on the Criteria of Basic Parameters for Planning Rock Grouting 원문보기

韓國地盤工學會論文集 = Journal of the Korean geotechnical society, v.38 no.2, 2022년, pp.15 - 27  

김종민 (세종대학교 건설환경공학과) ,  이응기 ((주)제일엔지니어링 철도부)

초록
AI-Helper 아이콘AI-Helper

암반 그라우팅은 시설물 지반의 안정성을 향상시키는 보강 및 재해방지 대책으로서의 적용성이 날로 증가하고 있으나, 현장에서의 그라우팅은 대부분 경험에 의존하는 바 가이드라인으로 사용할 수 있는 주요 계획인자에 대한 최소 기준값이 필요한 실정이다. 본 연구에서는 암반 그라우팅 계획에 있어 중요한 인자인 주입조건(물-시멘트비, 주입압, 단위 시멘트 주입량)과 그라우팅 효과(변형계수와 투수성)에 대한 기준값을 제시하였다. 제시된 기준값들은 국내외 수압파쇄시험 및 암반 투수시험 자료, 국내외 17개 현장의 그라우팅 시험시공 자료, 그리고 국내외 기준 및 연구를 분석한 결과이다. 또한 그라우팅 효과를 제고하기 위한 안정한 주입재의 조건에 부합하도록 국내의 높은 물-시멘트비는 조정되어야 하며, 조정된 물-시멘트비 적용에 따른 기준값 조정방안도 살펴보았다. 본 연구의 결과 역시 경험의존적인 측면이 있지만, 현재 기준 보다 합리적인 그라우팅 계획의 기준을 제시를 위한 향후 세부연구의 기초자료로 활용할 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

Despite the increasing applicability of rock grouting as a method for strengthening or disaster prevention by improving the stability of ground, criteria for planning parameters which can be used as minimum guideline are required since the current practice is mainly dependent on experience. In this ...

주제어

표/그림 (13)

참고문헌 (54)

  1. Barton, N., Buen, B., and Roald, S. (2002), Strengthening the Case for Grouting, Tunnels and Tunnelling International, Vol.34, No.1, pp.37-39. 

  2. Bernander, S. (2004), Grouting in Sedimentary and Igneous Rock with Special Reference to Pressure Induced Deformations, Lulea University of Technology, Lulea, Sweden, pp.1-65. 

  3. Eklund, D. (2005), Penetrability Due to Filtration Tendency of Cement Based Grout, Division of Soil and Rock Mechanics at Royal Institute of Technology, Stockholm. 

  4. Eriksson, M., Stille, H., and Andersson, J. (2000), Numerical Calculation for Prediction of Grout Spread with Account for Filtration and Varying Aperture, Tunnelling and Underground Space Technology, Vol.15, No.4, pp.353-364. 

  5. Gothall, R. and Stille, H. (2010), Fracture-fracture Interaction during Grouting, Tunnelling and Underground Space Technology, Vol.25, pp.199-204. 

  6. HK Research (2012), Performance Casebook of Grouting Management Using AGS (Automatic Grouting System), Hankook Geotechnology Inc. 

  7. Hollmen, K. (2008), R20 Programme: The Development of Grouting Technique-Stop Criteria and Field Tests, Working Report 2007-101, POVISA. 

  8. Hong, W.P., Yun, J.M., Yeo, G.G., and Lee, H. (2002), The Cut-off Effect by Rock Grouting in the Area of Dam-foundation, Proceedings of Korea Society of Civil Engineers Conference, pp.2110-2113. 

  9. Houlsby, A.C. (1992), Grouting in Rock Masses, Engineering in Rock Masses, pp.334-350. 

  10. Hunt, R.E. (2007), Geotechnical Investigation Methods-A Field Guide for Geotechnical Engineers, CRC press. 

  11. Janson, T. (1998), Calculation Models for Estimation of Grout Take in Hard Jointed Rock, Doctoral Thesis 1018, Royal Institute of Technology, Stockholm. 

  12. Jeong, G.C. and Seo, Y.S. (2002), A Study on Improvement Effects on Fractured Rock Mass by Consolidation Grouting in Tunnel, The Journal of Engineering Geology, Vol.12, No.2, pp.189-202. 

  13. Joo, H.W., Baek, S.H., Kwon, T.H., Han, J.T., Lee, J.H., and Yoo, W.K. (2020), Effect of Overburden Stress on Bulb Shapes of Horizontal Compaction Grout in Loose Sand: 2D-scaled Experimental Study, Journal of the Korean Geotechnical Society, Vol.36, No.12, pp.107-116. 

  14. Jun, K.J., Oh, M., and Yune, C.Y. (2017), Laboratory Test for the Performance of Grouting under Hydrostatic Pressure, Journal of the Korean Geotechnical Society, Vol.33, No.10, pp.49-58. 

  15. KEITI; Korea Environmental Industry & Technology Institute (2020), Development of a Prevention Technique for Ground Subsidence Induced by Sewage Pipeline and Test-bed Evaluation 

  16. Khosravi, M.H., Pipatpongsa, T., Majdi, A., and Ohta, H. (2009), Critical Grouting Pressure Prediction in Tran Kheirabad Rock Mass based on Fracture Mechanics Approach, Proceedings of the 44th National Conference on Japan Geotechnical Engineering, Yokohama, pp.445-446. 

  17. Kieffer, S., Dreese, T., Weil, J., and Kleberger, J. (2019), Tools for Optimizing Rock Mass Grouting, Geomechanics and Tunnelling, Vol.12, No.2, pp.121-128 

  18. Kim, T.H. and Lee, C.I. (2003), The Effect of Cement Milk Grouting on the Deformation behavior of Jointed Rock Mass, Tunnel & Underground Space, Vol.13, No.5, pp.331-343. 

  19. KCSC; Korea Construction Standard Center (2018), KDS 54 50 00:2018 Concrete Gravity Dam. 

  20. KCSC; Korea Construction Standard Center (2021), KDS 11 30 45:2021 Soft Ground Grouting. 

  21. Koronakis, N., Kontothanassis, P., and Katsaris, D. (2005), Design of Water Isolation Grouting for Reducing High Water Inflows in urban shallow tunnels, Underground Space Use; Analysis of the Past and Lessons for the Future, pp.271-276. 

  22. KRCC; Korea Rural Community Corporation (2001), A Practical Guide for the Design and Construction of Dam Grouting. 

  23. Kuisi, M.A., Naga, A.E., and Shaqaour, F. (2005), Improvement of Dam Foundation Using Grouting Intensity Number (GIN) Technique at Tannur Dam site, South Jordan, Electrical Journal of Geotechnical Engineering, pp.1-16. 

  24. Kutzner, C. (1996), Grouting of Rock and Soil. 

  25. Lee, E.K. (2015), A Study on Improvement of Rock Grouting Design Guide, Ph. D. Dissertation, Sejong University, Seoul, Korea. 

  26. Liu, Q., Lei, G., Peng, X., Lu, C., and Wei, L. (2018), Rheological Characteristics of Cement Grout and its Effect on Mechanical Properties of a Rock Fracture, Rock Mechanics and Rock Engineering, Vol.51, pp.613-625. 

  27. Lombardi, G. and Deere, D. (1993), Grouting Design and Control Using the GIN Principle, International Water Power & Dam Construction, Vol.45, No.6, pp.15-22. 

  28. Lombardi, G. (2002), Grouting of Rock Masses, 3rd International Conference on Grouting and Ground Treatment, Minusio, pp.164-197. 

  29. Lunn, R.J., Corson, L.T., Howell, C., Mountassir, E., Reid, C., and Harley, S.L. (2018), Could Magnetic Properties be Used to Image a Grout Rock Volume?, Journal of Applied Physics, Vol.155, pp.162-175. 

  30. MOLIT; Ministry Of Land, Infrastructure, and Transport (2011), Dam Design Standard. 

  31. MOLIT; Ministry Of Land, Infrastructure, and Transport (2016), KCS 11 30 45:2016 Geotechnical Grouting. 

  32. MOLIT; Ministry Of Land, Infrastructure, and Transport (2017), Special Specification for Railway Construction-Roadbed. 

  33. Morgan, E.K. (2004) Parameters of the Norwegian Q-system and Geological Conditions Correlated with Grout Take in the JAi Skaugum Railroad Tunnel, Thesis in Engineering and Structural Geology, University of Oslo, Oslo. 

  34. Moseley, M.P. and Kirsch, K. (2004), Ground Improvement, Spon Press. 

  35. Naudts, A. (2004), Contemporary Issues in Rock Grouting and Formulation of Engineered Cement Based Suspension Grouts, ECO Grouting Specialists Inc. 

  36. Olsson, J. (2008), Evaluation of Hard Rock Tunneling Data, Department of Earth Sciences Geology, University of Gothenburg, Gothenburg. 

  37. Panthi, K.K. and Nilsen, B. (2005), Significance of Grouting for Controlling Leakage in Water Tunnels-a Case from Nepal, Underground Space Use; Analysis of the Past and Lessons for the Future, pp. 931-937. 

  38. Park, D.H. (2010), Environmentally Friendly Characteristics and Durability of Inorganic Reinforcement Materials, Ph. D. Dissertation, nyang University, Seoul, Korea. 

  39. Rafi, J.Y. (2013), Design Approaches for Grouting of Rock Fractures; Theory and Practice, Licentiate Thesis, Royal Institute of Technology, Stockholm. 

  40. Roald, S., Nomeland, I.T., and Hansen, T.S. (2002), Multigrout-a Cement Based Injection System, Norwegian Tunneling Society. 

  41. SMG; Seoul Metropolitan Government (1996), Manual for Ground Reinforcement-Focusing on Injection method, pp.17-38. 

  42. Stille, H., Gustafson, G., and Hassler, L. (2012), Application of New Theories and Technology for Grouting of Dams and Foundations on Rock, Geotechnical and Geological Engineering, Vol.30, No.3, pp.603-624. 

  43. US Army Corps of Engineers (2017), EM 1110-2-3506: Engineering and Design-Grouting Technology, Washington D.C. 

  44. Utsuki, S. (2013), In-situ Experimental Studies on Improvement of Deformability of Rock Masses by Grouting Treatment, International Journal of the JCRM, Vol.9, No.1, pp.7-8. 

  45. Warner, J. (2004), Practical Handbook of Grouting-Soil, Rock, and Structures, John Wiley & Sons. 

  46. Weaver, K.D. (2000), A critical look at use of 'rules of thumb' for selection of grout injection pressures, Geo-Denver 2000, pp. 173-180. 

  47. Weaver, K.D. and Bruce, D.A. (2007), Dam Foundation Grouting-Revised and Expanded, ASCE. 

  48. Wiedmann, R. (1996), International Society for Rock Mechanics Commission on Rock Grouting, International Journal of Rock Mechanics, Mining Sciences, and Geomechanics, Vol.33, No.8, pp.803-847. 

  49. Wikimedia Commons (2013), URL: https://commons.wikimedia.org/wiki/File:Bingham_rheological_model.svg 

  50. Yang, C.P. (2004), Estimating Cement Take and Grout Efficiency on Foundation Improvement for Li-Yu-Tan Dam, Engineering Geology, Vol.75, No.1, pp.1-14. 

  51. Yang, H.S. and Kim, J.G. (2007), Trends of Research in Fracture Toughness of Rocks, Tunnel & Underground Space, Vol.17, No.6, pp.448-452. 

  52. You, K.H., Jie, H.K., Seo, K.W., Kim, S.J., and You, D.W. (2012), A Study on the Correlation between the Rock Mass Permeability before and After Grouting & Injection Volume and the Parameters of Q System in a Jointed Rock Mass Tunnel, Journal of Korean Tunnelling Association, Vol.14, No.6, pp.617-635. 

  53. Xiao, F., Liu, Q., and Zhao, Z. (2021), Information and Knowledge Behind Data from Underground Rock Grouting, Journal of Rock Mechanics and Geotechnical Engineering, Vol.13, pp.1326-1339. 

  54. Zou, L., Hakansson, U., and Cvetkovic, V. (2019), Cement Grout Propagation in Two-dimensional Fracture Networks: Impact of Structure and Hydraulic Variability, International Journal of Rock Mechanics and Mining Sciences, Vol.115, pp.1-10. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로