$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

양자점 광전극의 광전특성 향상을 위한 ZnS 패시베이션 층 코팅 조건에 관한 연구
Study on the Coating Condition of ZnS Passivation Layer for the Enhanced Photovoltaic Properties of Quantum Dot Photoelectrodes 원문보기

한국수소 및 신에너지학회 논문집 = Transactions of the Korean Hydrogen and New Energy Society, v.33 no.1, 2022년, pp.113 - 120  

정성목 (단국대학교 화학공학과) ,  김재엽 (단국대학교 화학공학과)

Abstract AI-Helper 아이콘AI-Helper

Quantum dots (QDs) are attractive photosensitizer candidates for application not only in solar cells but also in solar hydrogen generation. For the prepartion of highly efficient QD-sensitized photoelectrodes, it is important to reduce electron recombination at the photoanode/electrolyte interface. ...

주제어

참고문헌 (26)

  1. M. Gratzel, "Dye-sensitized solar cells", Journal of photochemistry and photobiology C: Photochemistry Reviews, Vol. 4, No. 2, 2003, pp. 145-153, doi: https://doi.org/10.1016/S1389-5567(03)00026-1. 

  2. S. Ruhle, M. Shalom, and A. Zaban, "Quantum-dot-sensitized solar cells", ChemPhysChem, Vol. 11, No. 11, 2010, pp. 2290-2304, doi: https://doi.org/10.1002/cphc.201000069. 

  3. J. Du, R. Singh, I. Fedin, A. S. Fuhr, and V. I. Klimov, "Spectroscopic insights into high defect tolerance of Zn:CuInSe 2 quantum-dot-sensitized solar cells", Nature Energy, Vol. 5, 2020, pp. 409-417, doi: https://doi.org/10.1038/s41560-020-0617-6. 

  4. M. A. Green, A. Ho-Baillie, and H. J. Snaith, "The emergence of perovskite solar cells", Nature photonics, Vol. 8, 2014, pp. 506-514, doi: https://doi.org/10.1038/nphoton.2014.134. 

  5. J. W. Jo, M. S. Seo, M. Park, J. Y. Kim, J. S. Park, I. K. Han, H. Ahn, J. W. Jung, B. H. Sohn, M. J. Ko, and H. J. Son, "Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric hole-transport material", Advanced Functional Materials, Vol. 26, No. 25, 2016, pp. 4464-4471, doi: https://doi.org/10.1002/adfm.201600746. 

  6. D. R. Baker and P. V. Kamat, "Photosensitization of TiO 2 nanostructures with CdS quantum dots: particulate versus tubular support architectures", Advanced Functional Materials, Vol. 19, No. 5, 2009, pp. 805-811, doi: https://doi.org/10.1002/adfm.200801173. 

  7. W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, and L. M. Peng, "CdS quantum dots sensitized TiO 2 nanotube-array photoelectrodes", Journal of the American Chemical Society, Vol. 130, No. 4, 2008, pp. 1124-1125, doi: https://doi.org/10.1021/ja0777741. 

  8. S. D. Sung, I. Lim, P. Kang, C. Lee, and W. I. Lee, "Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte", Chemical Communications, Vol. 54, 2013, pp. 6054-6056, doi: https://doi.org/10.1039/C3CC40754C. 

  9. Z. Pan, I. Mora-Sero, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, and J. Bisquert, "High-efficiency "green" quantum dot solar cells", Journal of the American Chemical Society, Vol. 136, No. 25, 2014, pp. 9203-9210, doi: https://doi.org/10.1021/ja504310w. 

  10. R. Oshima, A. Takata, and Y. Okada, "Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells", Applied Physics Letters, Vol. 93, No. 8, 2008, pp. 083111, doi: https://doi.org/10.1063/1.2973398. 

  11. J. Du, Z. Du, J. S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, and L. J. Wan, "Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%", Journal of the American Chemical Society, Vol. 138, No. 12, 2016, pp. 4201-4209, doi: https://doi.org/10.1021/jacs.6b00615. 

  12. X. Tong, Y. Zhou, L. Jin, K. Basu, R. Adhikari, G. S. Selopal, X. Tong, H. Zhao, S. Sun, A. Vomiero, Z. M.Wang, and F. Rosei, "Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation", Nano Energy, Vol. 31, 2017, pp. 441-449, doi: https://doi.org/10.1016/j.nanoen.2016.11.053. 

  13. S. Gimenez1, I. Mora-Sero1, L. Macor1, N. Guijarro, T. Lana-Villarreal, R. Gomez, L. J Diguna, Q. Shen, T. Toyoda, and J. Bisquert, "Improving the performance of colloidal quantum-dot-sensitized solar cells", Nanotechnology, Vol. 20, No. 29, 2009, pp. 295204, doi: http://doi.org/10.1088/0957-4484/20/29/295204. 

  14. Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang, Y. Li, Y. Zhao, I. Mora-Sero, J. Bisquert, and X. Zhong, "Amorphous TiO 2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%", Chemistry of Materials, Vol. 27, No. 24, 2015, pp. 8398-8405, doi: https://doi.org/10.1021/acs.chemmater.5b03864. 

  15. K. E. Roelofs, T. P. Brennan, J. C. Dominguez, C. D. Bailie, G. Y. Margulis, E. T. Hoke, M. D. McGehee, and S. F. Ben, "Effect of Al 2 O 3 recombination barrier layers deposited by atomic layer deposition in solid-state CdS quantum dot-sensitized solar cells", The Journal of Physical Chemistry C, Vol. 117, No. 11, 2013, pp. 5584-5592, doi: https://doi.org/10.1021/jp311846r. 

  16. Z. Li, L. Tu, H. Wang, H. Yang, and H. Ma, "TiO 2 passivation layer on ZnO hollow microspheres for quantum dots sensitized solar cells with improved light harvesting and electron collection", Nanomaterials, Vol. 10, No. 4, 2020, pp. 631, doi: https://doi.org/10.3390/nano10040631. 

  17. N . Guijarro, J. M . Cam pina, Q . Shen, T. Toyoda, T. Lana-Villarreal, and R. Gomez, "Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells", Physical Chemistry Chemical Physics, Vol. 13, No. 25, 2011, pp. 12024-12032, doi: https://doi.org/10.1039/C1CP20290A. 

  18. J. Y. Kim, J. W. Yang, J. H. Yu, W. H. Baek, C. H. Lee, H. J. Son, T. H. Hyeon, and M. J. Ko, "Highly efficient copper-indium-selenide quantum dot solar cells: suppression of carrier recombination by controlled ZnS overlayers", ACS nano,Vol. 9, No. 11, 2015, pp. 11286-11295, doi: https://doi.org/10.1021/acsnano.5b04917. 

  19. H. Song, Y. Lin, M. Zhou, H. Rao, Z. Pan, and X. Zhong, "Zn-Cu-In-S-Se quinary "green" alloyed quantum-ot-ensitized solar cells with a certified efficiency of 14.4%", Angewandte Chemie, Vol. 133, No. 11, 2020, pp. 6202-6209, doi: https://doi.org/10.1002/ange.202014723. 

  20. H. Zhang, C. Wang, W. Peng, C. Yang, and X. Zhong, "Quantum dot sensitized solar cells with efficiency up to 8.7% based on heavily copper-deficient copper selenide counter electrode", Nano Energy, Vol. 23, 2016, pp. 60-69, doi: https://doi.org/10.1016/J.NANOEN.2016.03.009. 

  21. L. Yue, H. Rao, J. Du, Z. Pan, J. Yu, and X. Zhong, "Comparative advantages of Zn-Cu-In-S alloy QDs in the construction of quantum dot-sensitized solar cells", RSC Advances, Vol. 8, No. 7, 2018, pp. 3637-3645, doi: https://doi.org/10.1039/C7RA12321C. 

  22. J. Yu, W. Wang, Z. Pan, J. Du, Z. Ren, W. Xue, and X. Zhong, "Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte", Journal of Materials Chemistry A, Vol. 5, No. 27, 2017, pp. 14124-14133, doi: https://doi.org/10.1039/C7TA04344A. 

  23. S. Lindroos, Y. Charreire, D. Bonnin, and M. Leskela, "Growth and characterization of zinc sulfide thin films deposited by the successive ionic layer adsorption and reaction (SILAR) method using complexed zinc ions as the cation precursor", Materials Research Bulletin, Vol. 33, No. 3, 1998, pp. 453-459, doi: https://doi.org/10.1016/S0025-5408(97)00254-7. 

  24. S. Lindroos, A. Arnold, and M. Leskela, "Growth of CuS thin films by the successive ionic layer adsorption and reaction method", Applied Surface Science, Vol. 158, No. 1-2, 2000, pp. 75-80, doi: https://doi.org/10.1016/S0169-4332(99)00582-6. 

  25. T. Hoshikawa, M. Yamada, R. Kikuchi, and K. Eguchi, "Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells", Journal of the Electrochemical Society, Vol. 152, No. 2, 2005, pp. E68, doi: https://doi.org/10.1149/1.1849776. 

  26. R. Kottayi, P. Panneerselvam, N. Singh, V. Murugadoss, R. Sittaramane, and S. Angaiah, "Influence of a bifunctional linker on the loading of Cu 2 AgInS 4 QDs onto porous TiO 2 NFs to use as an efficient photoanode to boost the photoconversion efficiency of QDSCs", New Journal of Chemistry, Vol. 44, No. 30, 2020, pp. 13148-13156, doi: https://doi.org/10.1039/D0NJ01699C. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로