$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 혈관과 섬유증의 평활근 및 세포외기질 조절에 대한 릴랙신의 다양한 작용기전
Diverse Mechanisms of Relaxin's Action in the Regulation of Smooth Muscles and Extracellular Matrix of Vasculature and Fibrosis 원문보기

생명과학회지 = Journal of life science, v.32 no.2, 2022년, pp.175 - 188  

민계식 (경상국립대학교 생명과학대학 간호학과)

초록
AI-Helper 아이콘AI-Helper

혈관과 섬유증 기관들의 평활근세포외기질에 대한 릴랙신의 조절기능이 입증되어왔다. 본 총설에서는 저항성 소동맥과 방광을 포함한 섬유증 기관들의 세포외기질에 작용하는 릴랙신의 다양한 기전들을 고찰한다. 릴랙신은 혈관 평활근육의 수축을 억제하고, 콜라겐과 같은 세포외기질의 구성성분들을 감소키켜 혈관벽의 수동적 신전성을 증가시킴으로써, 혈관확장을 유도한다. 릴랙신이 동맥의 혈관확장을 유도하는 주된 세포기전은 RXFP1/PI3K의 활성화, Akt 인산화 및 eNOS 활성화를 통한 내피세포-의존성 산화질소의 생성에 의해 매개된다. 추가적으로, 릴랙신은 또한 다른 대체경로들을 작동하여 신장과 장간막 동맥의 혈관확장을 증가시킨다. 신장 소동맥에서, 릴랙신은 내피세포의 MMPs 및 EtB 수용체의 활성화와 VEGF 및 PlGF의 생성을 촉진하여, 평활근의 수축성과 콜라겐의 침착을 억제함으로써 혈관확장을 초래한다. 이와 달리, 장간막 소동맥에서, 릴랙신은 bradykinin (BK)-유도 이완을 시간-의존적으로 증강시킨다. BK-매개 이완의 신속 증가는 IKCa 이온통로와 뒤이은 EDH 유발에 의존하는 반면, BK에 의한 지속적 이완은 COX 활성과 PGI2에 의존한다. 릴랙신의 항섬유화 효과는 염증유발 면역세포의 침투, endothelial-to-mesenchymal transition (EndMT) 및 근섬유아세포의 분화와 활성을 억제하여 매개된다. 릴랙신은 또한 근섬유아세포 내 NOS/NO/cGMP/PKG-1 경로를 활성화하여, TGF-β1-유도 ERK1/2 및 Smad2/3 신호의 활성과 ECM 콜라겐의 침착을 억제한다.

Abstract AI-Helper 아이콘AI-Helper

Relaxin has been demonstrated to have regulatory functions on both the smooth muscle and extracellular matrix (ECM) of blood vessels and fibrotic organs. The diverse mechanisms by which relaxin acts on small resistance arteries and fibrotic organs, including the bladder, are reviewed here. Relaxin i...

Keyword

표/그림 (3)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 따라서, 본 총설에서는 과거 및 최근 수년간의 연구결과들 에서 보고된 임신기간 중 혈관의 항상성 조절에 관여하는 릴 랙신의 작용, 신소동맥과 장간막동맥에 대한 비교를 통한 릴 랙신의 차별적 작용과 다양한 혈관확장 경로기전, 그리고 릴 랙신의 혈관 ECM 재구성에 대한 역할을 정리하였다. 또한, 최근 보고된 방광 섬유증에 대한 릴랙신의 억제효과와 함께, 다양한 조직기관들에서 공통적으로 발생할 수 있는 염증반응 과 섬유증에 대한 릴랙신의 ECM 재구성 조절 및 관련 세포내 신호전달기전들을 통한 섬유화 억제작용을 요약하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (108)

  1. Bani, D., Ballati, L., Masini, E., Bigazzi, M. and Sacchi, T. B. 1997. Relaxin counteracts asthma-like reaction induced by inhaled antigen in sensitized guinea pigs. Endocrinology 138, 1909-1915. 

  2. Bani, D., Baronti, R., Vannacci, A., Bigazzi, M., Sacchi, T. B., Mannaioni, P. F. and Masini, E. 2002. Inhibitory effects of relaxin on human basophils activated by stimulation of the Fc epsilon receptor. The role of nitric oxide. Int. immunopharmacol. 2, 1195-1204. 

  3. Bani, D., Failli, P., Bello, M. G., Thiemermann, C., Sacchi, T. B., Bigazzi, M. and Masini, E. 1998. Relaxin activates the L-arginine nitric oxide pathway in vascular smooth muscle cells in culture. Hypertension 31, 1240-1247. 

  4. Bani-Sacchi, T., Bigazzi, M., Bani, D., Mannaioni, P. F. and Masini, E. 1995. Relaxin-induced increased coronary flow through stimulation of nitric oxide production. Br. J. Pharmacol. 116, 1589-1594. 

  5. Bathgate, R. A., Halls, M. L., van der Westhuizen, E. T., Callander, G. E., Kocan, M. and Summers, R. J. 2013. Relaxin family peptides and their receptors. Physiol. Rev. 93, 405-480. 

  6. Beiert, T., Knappe, V., Tiyerili, V., Stockigt, F., Effelsberg, V., Linhart, M., Steinmetz, M., Klein, S., Schierwagen, R., Trebicka, J., Roell, W., Nickenig, G., Schrickel, J. W. and Andrie, R. P. 2018. Chronic lower-dose relaxin administration protects from arrhythmia in experimental myocardial infarction due to anti-inflammatory and anti-fibrotic properties. Int. J. Cardiol. 250, 21-28. 

  7. Beiert, T., Tiyerili, V., Knappe, V., Effelsberg, V., Linhart, M., Stockigt, F., Klein, S., Schierwagen, R., Trebicka, J., Nickenig, G., Schrickel, J. W. and Andrie, R. P. 2017. Relaxin reduces susceptibility to post-infarct atrial fibrillation in mice due to anti-fibrotic and anti-inflammatory properties. Biochem. Biophys. Res. Commun. 490, 643-649. 

  8. Bennett, R. G., Heimann, D. G., Singh, S., Simpson, R. L. and Tuma, D. J. 2014. Relaxin decreases the severity of established hepatic fibrosis in mice. Liver Int. 34, 416-426. 

  9. Bennet, R. G., Kharbanda, K. K. and Tuma, D. J. 2003. Inbibition of markers of hepatic stellate cell activation by the hormone relaxin. Biochem. Pharmacol. 66, 867-874. 

  10. Braddon, S. A. 1978. Relaxin-dependent adenosine 6',5'-monophosphate concentration changes in the mouse pubic symphysis. Endocrinology 102, 1292-1299. 

  11. Cai, J., Chen, X., Chen, X., Chen, L., Zheng, G., Zhon, H. and Zhou, X. 2017. Anti-fibrosis effect of relaxin and spironolactone combined on isoprenaline-induced myocardial fibrosis in rats via inhibition of endothelial-mesenchymal transition. Cell. Physiol. Biochem. 41, 1167-1178. 

  12. Casten, G. G. and Boucek, R. J. 1958. Use of relaxin in the treatment of scleroderma. J. Am. Med. Assoc. 166, 319-324. 

  13. Chen, L., Sha, M. L., Li, D., Zhu, Y. P., Wang, X. J., Jiang, C. Y., Xia, S. J. and Shao, Y. 2017. Relaxin abrogates renal interstitial fibrosis by regulating macrophage polarization via inhibition of Toll-like receptor 4 signaling. Oncotarget 8, 21044-21053. 

  14. Chen, L., Yang, T., Lu, D. W., Zhao, H., Feng, Y. L., Chen, H., Chen, D. O., Vaziri, N. D. and Zhao, Y. Y. 2018. Central role of dysregulation of TGF-beta/Smad in CKD progression and potential targets of its treatment. Biomed. Pharmacother. 101, 670-681. 

  15. Chow, B. S. M., Chew, E. G. Y., Zhao, C., Bathgate, R. A. D., Hewitson, T. D. and Samuel, C. S. 2012. Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases: the additional involvement of iNOS. PLoS One 7, e42714. 

  16. Chow, B. S. M., Kocan, M., Bosnyak, S., Sarwar, M., Wigg, B., Jones, E. S., Widdop, R. E., Summers, R. J., Bathgate, R. A. D., Hewitson, T. D. and Samuel, C. S. 2014. Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney Int. 86, 75-85. 

  17. Conrad, K. P. 2010. Unveiling the vasodilatory actions and mechanisms of relaxin. Hypertension 56, 2-9. 

  18. Conrad, K. P. 2011. Emerging role of relaxin in the maternal adaptations to normal pregnancy: implications for preeclampsia. Semin. Nephrol. 31, 15-32. 

  19. Conrad, K. P. 2011. Maternal vasodilation during pregnancy: emerging role of relaxin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R267-R275. 

  20. Conrad, K. P. 2016. G-Protein-coupled receptors as potential drug candidates in preeclampsia: targeting the relaxin/insulin-like family peptide receptor 1 for treatment and prevention. Hum. Reprod. 22, 647-664. 

  21. Conrad, K. P., Debrah, D. O., Novak, J., Danielson, L. A. and Shroff, S. G. 2004. Relaxin modifies systemic arterial resistance and compliance in conscious, nonpregnant rats. Endocrinology 145, 3289-3296. 

  22. Conrad, K. P. and Shroff, S. G. 2011. Effects of relaxin on arterial dilation, remodeling, and mechanical properties. Curr. Hypertens. Rep. 13, 409-420. 

  23. Debrah, D. O., Debrah, J. E., Haney, J. L., McGuane, J. T., Sacks, M. S., Conrad, K. P. and Shroff, S. G. 2011. Relaxin regulates vascular wall remodeling and passive mechanical properties in mice. J. Appl. Physiol. 111, 260-271. 

  24. Debrah, D. O., Novak, J., Matthews, J. E., Ramirez, R. J., Shroff, S. G. and Conrad, K. P. 2006. Relaxin is essential for systemic vasodilation and increased global arterial compliance during early pregnancy in conscious rats. Endocrinology 147, 5126-5131. 

  25. Dschietzig, T., Bartsch, C., Richter, C., Laule, M., Baumann, G. and Stangl, K. 2003. Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist: attenuation of endothelin-1-mediated vasoconstriction by stimulation of endothelin type-B receptor expression via ERK-1/2 and nuclear factor-kappaB. Circ. Res. 92, 32-40. 

  26. Du, X-J., Samuel, C. S., Gao, X-M., Zhao, L., Parry, L. J. and Tregear, G. W. 2003. Increased myocardial collagen and ventricular diastolic dysfunction in relaxin deficient mice: a gender-specific phenotype. Cardiovasc. Res. 57, 395-404. 

  27. Eser, P. O. and Janne, P. A. 2018. TGFbeta pathway inhibition in the treatment of non-small cell lung cancer. Pharmacol. Ther. 184, 112-130. 

  28. Evans, J. A. 1959. Relaxin (releasin) therapy in diffuse progressive scleroderma; a preliminary report. AMA. Arch. Derm. 79, 150-158. 

  29. Fallowfield, J. A., Hayden, A. L., Snowdon, V. K., Aucott, R. L., Stutchfield, B. M., Mole, D. J., Pellicoro, A., GordonWalker, T. T., Henke, A., Schrader, J., Trivedi, P. J., Princivalle, M., Forbes, S. J., Collins, J. E. and Iredale, J. P. 2014. Relaxin modulates human and rat hepatic myofibroblast function and ameliorates portal hypertension in vivo. Hepatology 59, 1492-1504. 

  30. Fisher, C., MacLean, M., Morecroft, I., Seed, A., Johnston, F., Hillier, C. and McMurray, J. 2002. Is the pregnancy hormone relaxin also a vasodilator peptide secreted by the heart? Circulation 106, 292-295. 

  31. Garber, S. L., Mirochnik, Y., Brecklin, C. S., Unemori, E. N., Singh, A. K., Slobodskoy, L., Grove, B. H., Arruda, J. A. and Dunea, G. 2001. Relaxin decreases renal interstitial fibrosis and slows progression of renal disease. Kidney Int. 59, 876-882. 

  32. Gieseek 3rd, R. L., Wilson, M. S. and Wynn, T. A. 2018. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62-76. 

  33. Gooi, J. H., Richardson, M. L., Jelinic, M., Girling, J. E., Wlodek, M. E., Tare, M. and Parry, L. J. 2013. Enhanced uterine artery stiffness in aged pregnant relaxin mutant mice is reversed with exogenous relaxin treatment. Biol. Reprod. 89, 18. 

  34. Halls, M. L., Bathgate, R. A. D. and Summers, R. J. 2006. Relaxin family peptide receptors RXFP1 and RXFP2 modulate cAMP signaling by distinct mechanisms. Mol. Pharmacol. 70, 214-226. 

  35. Heeg, M. H., Koziolek, M. J., Vasko, R., Schaefer, L., Sharma, K., Muller, G. A. and Strutz, F. 2005. The antifibrotic effects of relaxin in human renal fibroblasts are mediated in part by inhibition of the Smad2 pathway. Kidney Int. 68, 96-109. 

  36. Hewitson, T. D., Ho, W. Y. and Samuel, C. S. 2010. Antifibrotic properties of relaxin: in vivo mechanism of action in experimental renal tubulointerstitial fibrosis. Endocrinology 151, 4938-4948. 

  37. Hewitson, T. D., Mookerjee, I., Masterson, R., Zho, C., Tregear, G. W., Becker, G. J. and Samuel, C. S. 2007. Endogenous relaxin is a naturally occuring modulator of experimental renal tubulointerstitial fibrosis. Endocrinology 148, 660-669. 

  38. Hewitson, T. D., Zhao, C., Wigg, B., Lee, S. W., Simpson, E. R., Boon, W. C. and Samuel, C. S. 2012. Relaxin and castration in male mice protect from, but testosterone exacerbates, age-related cardiac and renal fibrosis, whereas estrogens are an independent determinant of organ size. Endocrinology 153, 188-199. 

  39. Hisaw, F. L. 1926. Experimental relaxation of the pubic ligament of the guinea pig. Proc. Soc. Exp. Biol. Med. 23, 661-663. 

  40. Hsu, S. Y., Nakabayashi, K., Nishi, S., Kumagai, J., Kudo, M., Sherwood, O. D. and Hsueh, A. J. W. 2002. Activation of orphan receptors by the hormone relaxin. Science 295, 671-674. 

  41. Huuskes, B. M., Wise, A. F., Cox, A. J., Lin, E. X., Payne, N. L., Kelly, D. J., Samuel, C. S. and Ricardo, S. D. 2015. Combination therapy of mesenchymal stem cells and serelaxin effectively attenuates renal fibrosis in obstructive nephropathy. FASEB J. 29, 540-553. 

  42. Ikeda, Y., Zabbarova, I. V., Birder, L. A., Wipf, P., Getchell, S. E., Tyagi, P., Fry, C. H., Drake, M. J. and Kanai, A. J. 2018. Relaxin-2 therapy reverses radiation-induced fibrosis and restores bladder function in mice. Neurourol. Urodyn. 37, 2441-2451. 

  43. Jelinic, M., Leo, C. H., Post Uiterweer, E. D., Sandow, S. L., Gooi, J. H., Wlodek, M. E., Conrad, K. P., Parkington, H., Tare, M. and Parry, L. J. 2014. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment. FASEB J. 28, 275-287. 

  44. Jeyabalan, A., Novak, J., Danielson, L. A., Kerchner, L. J., Opett, S. L. and Conrad, K. P. 2003. Essential role for vascular gelatinase activity in relaxin-induced renal vasodilation, hyperfiltration, and reduced myogenic reactivity of small arteries. Circ. Res. 93, 1249-1257. 

  45. Jeyabalan, A., Novak, J., Doty, K. D., Matthews, J., Fisher, M. C., Kerchner, L. J. and Conrad, K. P. 2007. Vascular metalloproteinase-9 mediates the inhibition of myogenic reactivity in small arteries isolated from rats after short-term administration of relaxin. Endocrinology 148, 189-197. 

  46. Kanai, A. J., Konieczko, E. M., Bennett, R. G., Samuel, C. S. and Royce, S. G. 2019. Relaxin and fibrosis: emerging targets, challenges, and future targets. Mol. Cell. Endocrinol. 487, 66-74. 

  47. Kang, Y. M., Lee, H. M., Moon, S. H., Kang, H. and Choi, Y. R. 2017. Relaxin modulates the expression of MMPs and TIMPs in fibroblasts with carpal tunnel syndrome. Yonsei Med. J. 58, 415-422. 

  48. Katz, L. H., Likhter, M., Jogunoori, W., Belkin, M., Ohshiro, K. and Mishra, L. 2016. TGF-beta signaling in liver and gastrointestinal cancers. Cancer Lett. 379, 166-172. 

  49. Kerchner, L. J., Novak, J., Hanley-Yanez, K., Doty, K. D., Danielson, L. A. and Conrad, K. P. 2005. Evidence against the hypothesis that endothelial endothelin B receptor expression is regulated by relaxin and pregnancy. Endocrinology 146, 2791-2797. 

  50. Kocan, M., Sarwar, M., Ang, S. Y., Xiao, J., Marugan, J. J., Hossain, M. A., Wang, C., Hutchinson, D. S., Samuel, C. S., Agoulnik, A. J., Bathgate, R. A. D. and Summers, R. J. 2017. ML290 is a biased allosteric agonist at the relaxin receptor RXFP1. Sci. Rep. 7, 2968. 

  51. Krajnc-Franken, M. A. M., van Disseldorp, A. J. M., Koenders, J. E., Mosselman, S., van Duin, M. and Gossen, J. A. 2004. Impaired nipple development and parturition in LGR7 knockout mice. Mol. Cell. Biol. 24, 687-696. 

  52. Lee, S. B. and Kalluri, R. 2010. Mechanistic connection between inflammation and fibrosis. Kidney Int. Suppl. 119, S22-26. 

  53. Leo, C. H., Jelinic, M., Gooi, J. H., Tare, M. and Parry, L. J. 2014. A vasoactive role for endogenous relaxin in mesenteric arteries of male mice. PLoS One 9, e107382. 

  54. Leo, C. H., Jelinic, M., Ng, H. H., Marshall, S. A., Novak, J., Tare, M., Conrad, K. P. and Parry, L. J. 2017. Vascular actions of relaxin: nitric oxide and beyond. Br. J. Pharmacol. 174, 1002-1014. 

  55. Leo, C. H., Jelinic, M., Ng, H. H., Tare, M. and Parry, L. J. 2016. Serelaxin: a novel therapeutic for vascular diseases. Trends Pharmacol. Sci. 37, 498-507. 

  56. Leo, C. H., Jelinic, M., Ng, H. H., Tare, M. and Parry, L. J. 2016. Time-dependent activation of prostacyclin and nitric oxide pathways during continuous i.v. infusion of serelaxin (recombinant human H2 relaxin). Br. J. Pharmacol. 173, 1005-1017. 

  57. Leo, C. H., Jelinic, M., Parkington, H. C., Tare, M. and Parry, L. J. 2014. Acute intravenous injection of serelaxin (recombinant human relaxin-2) causes rapid and sustained bradykinin-mediated vasorelaxation. J. Am. Heart Assoc. 3, e000493. 

  58. Li, Y., Brookes, Z. L. S. and Kaufman, S. 2005. Acute and chronic effects of relaxin on vasoactivity, myogenic reactivity and compliance of the rat mesenteric arterial and venous vasculature. Regul. Pept. 132, 41-46. 

  59. Marshall, S. A., Leo, C. H., Senadheera, S. N., Girling, J. E., Tare, M. and Parry, L. J. 2016. Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R847-R857. 

  60. Martin, B., Gabris-Weber, B. A., Reddy, R., Romero, G., Chattopadhyay, A. and Salama, G. 2018. Relaxin reverses inflammatory and immune signals in aged hearts. PLoS One 13, e0190935. 

  61. Masini, E., Bani, D., Bello, M. G., Bigazzi, M., Mannaioni, P. F. and Sacchi, T. B. 1997. Relaxin counteracts myocardial damage induced by ischemia-reperfusion in isolated guinea pig hearts: evidence for an involvement of nitric oxide. Endocrinology 138, 4713-4720. 

  62. Masini, E., Bani, D., Bigazzi, M., Mannaioni, P. F. and BaniSacchi, T. 1994. Effects of relaxin on mast cells: in vitro and in vivo studies in rats and guinea pigs. J. Clin. Invest. 94, 1974-1980. 

  63. Massicotte, G., Parent, A. and St-Louis, J. 1989. Blunted responses to vasoconstrictors in mesenteric vasculature but not in portal vein of spontaneously hypertensive rats treated with relaxin. Proc. Soc. Exp. Biol. Med. 190, 254-259. 

  64. Masterson, R., Hewitson, T. D., Kelynack, K., Martic, M., Parry, L., Bathgate, R., Darby, I. and Becker, G. 2004. Relaxin down-regulates renal fibroblast function and promotes matrix remodelling in vitro. Nephrol. Dial. Transplant. 19, 544-552. 

  65. McGuane, J. T., Danielson, L. A., Debrah, J. E., Rubin, J. P., Novak, J. and Conrad, K. P. 2011. Angiogenic growth factors are new and essential players in the sustained relaxin vasodilatory pathway in rodents and humans. Hypertension 57, 1151-1160. 

  66. McGuane, J. T., Debrah, J. E., Sautina, L., Jarajapu, Y. P. R., Novak, J., Rubin, J. P., Grant, M. B., Segal, M. and Conrad, K. P. 2011. Relaxin induces rapid dilation of rodent small renal and human subcutaneous arteries via PI3 kinase and nitric oxide. Endocrinology 152, 2786-2796. 

  67. Meera, P., Anwer, K., Monga, M., Oberti, C., Stefani, E., Toro, L. and Sanborn, B. M. 1995. Relaxin stimulates myometrial calcium-activated potassium channel activity via protein kinase A. Am. J. Physiol. 269, C312-C317. 

  68. Meng, X. M., Nikolic-Paterson, D. J. and Lan, H. Y. 2016. TGF-beta: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325-338. 

  69. Mookerjee, J., Hewitson, T. D., Halls, M. L., Summers, R. J., Mathai, M. L., Bathgate, R. A. D., Tregear, G. W. and Samuel, C. S. 2009. Relaxin inhibits renal myofibroblast differentiation via RXFP1, the nitric oxide pathway, and Smad2. FASEB J. 23, 1219-1229. 

  70. Ng, H. H., Jelinic, M., Parry, L. J. and Leo, C. H. 2015. Increased superoxide production and altered nitric oxide-mediated relaxation in the aorta of young but not old male relaxin-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 309, H285-H296. 

  71. Ng, H. H., Shen, M., Samuel, C. S., Schlossman, J. and Bennett, R. G. 2019. Relaxin and extracellular matrix remodeling: mechanisms and signaling pathways. Mol. Cell. Endocrinol. 487, 59-65. 

  72. Nishikori, K., Weisbrodt, N. W., Sherwood, O. D. and Sanborn, B. M. 1983. Effects of relaxin on rat uterine myosin light chain kinase activity and myosin light chain phosphorylation. J. Biol. Chem. 258, 2468-2474. 

  73. Nistri, S., Chiappini, L., Sassoli, C. and Bani, D. 2003. Relaxin inhibits lipopolysaccharide-induced adhesion of neutrophils to coronary endothelial cells by a nitric oxide-mediated mechanism. FASEB J. 17, 2109-2111. 

  74. Nistri, S., Cinci, L., Perna, A. M., Masini, E. and Bani, D. 2008. Mast cell inhibition and reduced ventricular arrhythmias in a swine model of acute myocardial infarction upon therapeutic administration of relaxin. Inflamm. Res. 57 Suppl 1, S7-8. 

  75. Novak, J., Danielson, L. A., Kerchner, L. J., Sherwood, O. D., Ramirez, R. J., Moalli, P. A. and Conrad, K. P. 2001. Relaxin is essential for renal vasodilation during pregnancy in conscious rats. J. Clin. Invest. 107, 1469-1475. 

  76. Novak, J., Parry, L. J., Matthews, J. E., Kerchner, L. J., Indovina, K., Hanley-Yanez, K., Doty, K. D., Debrah, D. O., Shroff, S. G. and Conrad, K. P. 2006. Evidence for local relaxin ligand-receptor expression and function in arteries. FASEB J. 20, 2352-2362. 

  77. Novak, J., Ramirez, R. J. J., Gandley, R. E., Sherwood, O. D. and Conrad, K. P. 2002. Myogenic reactivity is reduced in small renal arteries isolated from relaxin-treated rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R349-R355. 

  78. Pini, A., Boccalini, G., Lucarini, L., Catarinicchia, S., Guasti, D., Masini, E., Bani, D. and Nistri, S. 2016. Protection from cigarette smoke-induced lung dysfunction and damage by H2 relaxin (serelaxin). J. Pharmacol. Exp. Ther. 357, 451-458. 

  79. Raleigh, J. V., Mauro, A. G., Devarakonda, T., Marchetti, C., He, J., Kim, E., Filippone, S., Das, A., Toldo, S., Abbate, A. and Salloum, F. N. 2017. Reperfusion therapy with recombinant human relaxin-2 (serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovasc. Res. 113, 609-619. 

  80. Rao, M. R. and Sanborn, B. M. 1986. Relaxin increases calcium efflux from rat myometrial cells in culture. Endocrinology 119, 435-437. 

  81. Royce, S. G., Shen, M., Patel, K. P., Huuskes, B. M., Ricardo, S. D. and Samuel, C. S. 2015. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease. Stem Cell Res. 15, 495-505. 

  82. Samuel, C. S., Cendrawan, S., Gao, X-M., Ming, Z., Zhao, C., Kiriazis, H., Xu, Q., Tregear, G. W., Bathgate, R. A. D. and Du, X-J. 2011. Relaxin remodels fibrotic healing following myocardial infarction. Lab. Invest. 91, 675-690. 

  83. Samuel, C. S., Royce, S. G., Chen, B., Cao, H., Gossen, J. A., Tregear, G. W. and Tang, M. L. K. 2009. Relaxin family peptide receptor-1 protects against airway fibrosis during homeostasis but not against fibrosis associated with chronic allergic airways disease. Endocrinology 150, 1495-1502. 

  84. Samuel, C. S., Royce, S. G., Hewitson, T. D., Denton, K. M., Cooney, T. E. and Bennett, R. G. 2017. Anti-fibrotic actions of relaxin. Br. J. Pharmacol. 174, 962-976. 

  85. Samuel, C. S., Unemori, E. N., Mookerjee, I., Bathgate, R. A., Layfield, S. L., Mak, J., Tregear, G. W. and Du, X. J. 2004. Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145, 4125-4133. 

  86. Samuel, C. S., Zhao, C., Bathgate, R. A., Bond, C. P., Burton, M. D., Parry, L. J., Summers, R. J., Tang, M. L., Amento, E. P. and Tregear, G. W. 2003. Relaxin deficiency in mice is associated with an age-related progression of pulmonary fibrosis. FASEB J. 17, 121-123. 

  87. Samuel, C. S., Zhao, C., Bathgate, R. A., Du, X. J., Summers, R. J., Amento, E. P., Walker, L. L., McBurnie, M., Zhao, L. and Tregear, G. W. 2005. The relaxin gene-knockout mouse: a model of progressive fibrosis. Ann. N. Y. Acad. Sci. 1041, 173-181. 

  88. Samuel, C. S., Zhao, C., Bond, C. P., Hewitson, T. D., Amento, E. P. and Summers, R. J. 2004. Relaxin-1-deficient mice develop an age-related progression of renal fibrosis. Kidney Int. 65, 2054-2064. 

  89. Sarwar, M., Samuel, C. S., Bathgate, R. A., Stewart, D. R. and Summers, R. J. 2015. Serelaxin-mediated signal transduction in human vascular cells: bell-shaped concentrationresponse curves reflect differential coupling to G proteins. Br. J. Pharmacol. 172, 1005-1019. 

  90. Sassoli, C., Chellini, F., Pini, A., Tani, A., Nistri, S., Nosi, D., Zecchi-Orlandini, S., Bani, D. and Formigli, L. 2013. Relaxin prevents cardiac fibroblast-myofibroblast transition via Notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One 8, e63896. 

  91. Schinner, E., Wetzl, V., Schramm, A., Kees, F., Sandner, P., Stasch, J. P., Hofmann, F. and Schlossmann, J. 2017. Inhibition of the TGFβ signaling pathway by cGMP and cGMP-dependent kinase I in renal fibrosis. FEBS Open Bio 7, 550-561. 

  92. Sherwood, O. D. 2004. Relaxin's physiological roles and other diverse actions. Endocr. Rev. 2, 205-234. 

  93. Unemori, E. N. and Amento, E. P. 1990. Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts. J. Biol. Chem. 265, 10681-10685. 

  94. Unemori, E. N., Pickford, L. B., Salles, A. L., Piercy, C. E., Grove, B. H., Erikson, M. E. and Amento, E. P. 1996. Relaxin induces an extracellular matrix degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo. J. Clin. Invest. 98, 2739-2745. 

  95. van Drongelen, J., Ploemen, I. H. J., Pertijs, J., Gooi, J. H., Sweep, F. C. G. J., Lotgering, F. K., Spaanderman, M. E. A. and Smits, P. 2011. Aging attenuates the vasodilator response to relaxin. Am. J. Physiol. Heart Circ. Physiol. 300, H1609-H1615. 

  96. van Drongelen, J., van Koppen, A., Pertijs, J., Gooi, J. H., Parry, L. J., Sweep, F. C. G. J., Lotgering, F. K., Smits, P. and Spaanderman, M. E. A. 2012. Impaired vascular responses to relaxin in diet-induced overweight female rats. J. Appl. Physiol. 112, 962-969. 

  97. van Drongelen, J., van Koppen, A., Pertijs, J., Gooi, J. H., Sweep, F. C. G. J., Lotgering, F. K., Spaanderman, M. E. A. and Smits, P. 2013. Impaired effect of relaxin on vasoconstrictor reactivity on spontaneous hypertensive rats. Peptides 49, 41-48. 

  98. Vodstrcil, L. A., Tare, M., Novak, J., Dragomir, N., Ramirez, R. J., Wlodek, M. E., Conrad, K. P. and Parry, L. J. 2012. Relaxin mediates uterine artery compliance during pregnancy and increases uterine blood flow. FASEB J. 26, 4035- 4044. 

  99. Wang, C., Kemp-Harper, B. K., Kocan, M., Ang, S. Y., Hewitson, T. D. and Samuel, C. S. 2016. The anti-fibrotic actions of relaxin are mediated through a NO-sGC-cGMP-dependent pathway in renal myofibroblasts in vitro and enhanced by the NO donor, diethylamine nonoate. Front. Pharmacol. 7, 91. 

  100. Wang, D., Luo, Y., Myakala, K., Orlicky, D. J., Dobrinskikh, E., Wang, X. and Levi, M. 2017. Serelaxin improves cardiac and renal function in DOCA-salt hypertensive rats. Sci. Rep. 7, 9793. 

  101. Wetzl, V., Schinner, E., Kees, F., Hofmann, F., Faerber, L. and Schlossmann, J. 2016. Involvement of cyclic guanosine monophosphate-dependent protein kinase I in renal antifibrotic effects of serelaxin. Front. Pharmacol. 7, 195. 

  102. Wynn, T. A. 2008. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199-210. 

  103. Yang, J., Chen, C., Ren, H., Han, Y., He, D., Zhou, L., Hopfer, U., Jose, P. A. and Zeng, C. 2012. Angiotensin II AT(2) receptor decreases AT(1) receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar-Kyoto rats. Hypertens 30, 1176-1184. 

  104. Yoshida, T., Kumagai, H., Kohsaka, T. and Ikegaya, N. 2014. Protective effects of relaxin against cisplatin-induced nephrotoxicity in rats. Nephron Exp. Nephrol. 128, 9-20. 

  105. Yue, Y., Meng, K., Pu, Y. and Zhang, X. 2017. Transforming growth factor beta (TGF-beta) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res. Clin. Pract. 133, 124-130. 

  106. Zhao, L., Samuel, C. S., Tregear, G. W., Beck, F. and Wintour, E. M. 2000. Collagen studies in late pregnant relaxin null mice. Biol. Reprod. 63, 697-703. 

  107. Zheng, G., Cai, J., Chen, X., Chen, L., Ge, W., Zhou, X. and Zhou, H. 2017. Relaxin ameliorates renal fibrosis and expression of endothelial cell transition markers in rats of isoproterenol-induced heart failure. Biol. Pharm. Bull. 40, 960-966. 

  108. Zhou, X., Chen, X., Cai, J. J., Chen, L. Z., Gong, Y. S., Wang, L. X., Gao, Z., Zhang, H. Q., Huang, W. J. and Zhou, H. 2015. Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway. Drug Des. Devel. Ther. 9, 4599-4611. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로