$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고정된 사각형 수중 및 부유식 구조물에 의한 고립파의 처오름높이 저감 수치모의
Numerical Simulation on Reduced Runup Height of Solitary Wave by Fixed Submerged and Floating Rectangular Obstacles 원문보기

한국해안·해양공학회논문집 = Journal of Korean Society of Coastal and Ocean Engineers, v.34 no.6, 2022년, pp.211 - 221  

신충훈 (한국수력원자력(주)) ,  김형석 (군산대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

파의 처오름높이는 제방, 호안 및 방파제와 같은 해안 구조물의 설계에 영향을 미치는 가장 중요한 매개변수 중 하나이다. 본 연구에서는 비정수압 수치모형인 SWASH(Zijlema et al., 2011)를 이용해 고정된 수중 및 부유식 사각형 구조물에 의한 고립파의 처오름높이 저감 효과를 분석하였다. SWASH 수치모형이 고립파의 전파, 쇄파 및 처오름현상을 매우 잘 재현하는 것을 확인하였다. 또한 수중 및 부유식 사각형 구조물에 의한 고립파의 파랑변형을 잘 재현하는 것을 확인하였다. 마지막으로 수중 및 부유식 사각형 구조물의 처오름높이 저감 효과를 검토하였다. 부유식 구조물의 에너지 감쇠효과는 수중 구조물보다 크고, 처오름높이 저감에 더 효과적인 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

The wave runup height is one of the most important parameters for affecting the design of coastal structures such as dikes, revetments, and breakwaters. In this study, SWASH (Zijlema et al., 2011), a non-hydrostatic pressure numerical model, was used to analyze the effect of reducing The wave runup ...

주제어

참고문헌 (43)

  1. Chang, K.A., Hsu, T.J. and Liu, P.L.F. (2001). Vortex generation?and evolution in water waves propagating over a submerged?rectangular obstacle: Part I. Solitary waves. Coastal Engineering, 44(1), 13-36.? 

  2. Cho, I.H. (2002). Wave control performance of moored pontoontype floating breakwater. Journal of the Korean Society for?Marine Environment & Energy, 5(3), 35-44(in Korean).? 

  3. Cho, Y.-S., Lee, J.I. and Kim, Y.T. (2002). Hydraulic experiments?on reflection of regular waves due to rectangular submerged?breakwaters. Journal of Korea Water Resources Association,?35(5), 563-573 (in Korean).? 

  4. Frederiksen, H.D. (1971). Wave attenuation by fluid filled bags.?Journal of the Waterways, Harbors and Coastal Engineering?Division, 97(1), 73-90.? 

  5. Goring, D.G. and Raichlen, F. (1992). Propagation of long waves?onto shelf. Journal of Waterway Port Coastal and Ocean Engineering, 118(1), 43-61.? 

  6. Grilli, S.T., Losada, M.A. and Martin, F. (1994). Characteristics of?solitary wave breaking induced by breakwaters. Journal of?Waterway Port Coastal and Ocean Engineering, 120(1), 74-92.? 

  7. Hsu, T.W., Hsieh, C.M. and Hwang, R.R. (2004). Using RANS to?simulate vortex generation and dissipation around impermeable?submerged double breakwaters. Coastal Engineering, 51(7),?557-579.? 

  8. Hales, L.Z. (1981). Floating Breakwaters : State of the Art Literature Review. Technical Report No. 81-1, Coastal Engineering?Research Center, U.S. Army Corps of Engineers, Fort Belvoir,?Virginia.? 

  9. Ha, T., Jung, W. and Cho, Y.-S. (2012). Numerical study on?reduced runup heights of solitary wave by submerged structures.?Journal of the Korean Society of Hazard Mitigation, 12(5), 251-258 (in Korean).? 

  10. Huang, C.J. and Dong, C.M. (1999). Wave deformation and vortex?generation in water waves propagating over a submerged dike.?Coastal Engineering, 37(2), 123-148.? 

  11. Huang, C.J. and Dong, C.M. (2001). On the interaction of a solitary?wave and a submerged dike. Coastal Engineering, 43(3-4), 265-286.? 

  12. Hwang, J.K., Lee, S.H. and Cho, Y.-S. (2004). Transformation of?irregular waves due to rectangular submerged non-porous?breakwaters. Journal of Korea Water Resources Association,?37(11), 949-958 (in Korean).? 

  13. Irtem, E., Seyfioglu, E. and Kabdasli, S. (2011). Experimental?investigation on the effects of submerged breakwaters on tsunami run-up height. Journal of Coastal Research, 516-520.? 

  14. Jung, J.-S., Cho, D.-H., Hwang, J.-K. and Cho, Y.-S. (2004).?Reflection of random waves propagating over rectangular submerged non-porous breakwaters. Journal of Korea Water?Resources Association, 37(9), 729-736 (in Korean).? 

  15. Jung, J.-S., Kang, K.-Y. and Cho, Y.-S. (2007). Analysis of multidirectional random waves propagating over multi arrayed?impermeable submerged breakwater. Journal of Korean Society?of Coastal and Ocean Engineers, 19(1), 29-37 (in Korean).? 

  16. Kim, D.S., Lee, K.H., Yoo, H.S., Kim, C.H. and Son, B.K. (2004).?A study of the wave control characteristics of the permeable?submerged breakwater using VOF method in irregular wave?fields. Journal of Korean Society of Coastal and Ocean Engineers, 16(3), 121-129 (in Korean).? 

  17. Lee, J. (2005). Numerical investigation of wave interaction with a?floating breakwater. Ph.D. Dissertation, Yonsei University.? 

  18. Lee, J.I., Kim, Y.T. and Cho, Y.-S. (2003). Laboratory experiments?on reflection of regular waves due to submerged breakwaters.?Journal of Korean Society of Coastal and Ocean Engineers,?15(3), 167-175 (in Korean).? 

  19. Lin, P. (2004). A numerical study of solitary wave interaction with?rectangular obstacles. Coastal Engineering, 51(1), 35-51.? 

  20. Lin, P. (2006). A multiple-layer ?-coordinate model for simulation?of wave-structure interaction. Computers & Fluids, 35(2), 147-167.? 

  21. Madsen, O.S. and Mei, C.C. (1969). The transformation of a solitary wave over an uneven bottom. Journal of Fluid Mechanics,?39(4), 781-791.? 

  22. McCartney, B.L. (1985). Floating breakwater design. Journal of?Waterway Port Coastal and Ocean Engineering, 111(2), 304-318.? 

  23. Park, S.H., Lee, S.O., Jung, T.H. and Cho, Y.-S. (2007). Experimental study on reduction of rup-up height of sloping breakwater due to submerged structure. Journal of the Korean Society?of Hazard Mitigation, 7(5), 187-197 (in Korean).? 

  24. Seabra-Santos, F.J., Renouard, D.P. and Temperville, A.M. (1987).?Numerical and experimental study of the transformation of a?solitary wave over a shelf or isolated obstacle. Journal of Fluid?Mechanics, 176, 117-134.? 

  25. Shin, C.H. and Yoon, S.B. (2017). Improvement of wave generation for SWASH model using relaxation method. Journal of?Korean Society of Coastal and Ocean Engineers, 29(4), 169-179(in Korean).? 

  26. Shin, C.H. and Yoon, S.B. (2018). A numerical study on flow in?porous structure using non-hydrostatic model. Journal of?Korean Society of Coastal and Ocean Engineers, 30(3), 114-122(in Korean).? 

  27. Smit, P., Zijlema, M. and Stelling, G. (2013). Depth-induced wave?breaking in a non-hydrostatic, near-shore wave model. Coastal?Engineering, 76, 1-16.? 

  28. Stelling, G. and Zijlema, M. (2003). An accurate and efficient?finite-difference algorithm for non-hydrostatic free-surface flow?with application to wave propagation. Int. J. Numer. Meth. Fluids, 43, 1-23.? 

  29. Stelling, G.S. and Duinmeijer, S.P.A. (2003). A staggered conservative scheme for every froude number in rapidly varied shallow water flows. Int. J. Numer. Meth. Fluids, 43, 1329-1354.? 

  30. Sutko, A.A. and Haden, E.L. (1974). The Effect of Surge, Heave?and Pitch on the Performance of a Floating Breakwter, Floating?Breakwaters Conference Papers, University of Rhode Island,?Marine Technical Report Series, 24, 21-39.? 

  31. Synolakis, C.E. (1986). The Runup of Long Waves. Ph.D. Thesis,?California Institute of Technology, Pasadena, California, 91125, 228.? 

  32. Synolakis, C.E. (1987). The runup of solitary waves. Journal of?Fluid Mechanics, 185, 523-545.? 

  33. Tang, C.J. and Chang, J.H. (1998). Flow separation during solitary?wave passing over submerged obstacle. Journal of Hydraulic?Engineering, 124(7), 742-749.? 

  34. Wang, K.-H. (1993). Diffraction of solitary waves by breakwaters.?Journal of Waterway Port Coastal and Ocean Engineering,?119(1), 49-69.? 

  35. Wang, J., He, G., You, R. and Liu, P. (2018). Numerical study on?interaction of a solitary wave with the submerged obstacle.?Ocean Engineering, 158, 1-14.? 

  36. Western Canada Hydraulic Laboratories Ltd. (1981). Development?of a Manual for the Design of Floating Breakwaters. Department of Fisheries and Oceans, Small Craft Harbours Branch.? 

  37. Yang, W.S., Cho, W.C. and Park, W.S. (2001). Control of wave?screening performance of floating breakwaters. Journal of?Korean Society of Coastal and Ocean Engineers, 13(3), 230-236?(in Korean).? 

  38. Yoon, J.S., Lee, M.K. and Jung, K.H. (2005). Analysis of flow and?turbulence structure for rectangular floating breakwater. Journal?of the Korean Society of Civil Engineers B, 25(5B), 375-383 (in?Korean).? 

  39. Yoon, J.S., Son, H.J., Chun, S.Y. and Cho, Y.-S. (2010). Experimental study on hydraulic characteristics and vorticity interactions of floating breakwaters. Journal of The Korean Society of?Hazard Mitigation, 10(6), 175-183 (in Korean).? 

  40. Zhuang, F. and Lee, J.J. (1997). A viscous rotational model for?wave overtopping over marine structure. In Coastal Engineering?1996, 2178-2191.? 

  41. Zijlema, M. and Stelling, G.S. (2005). Further experiences with?computing non-hydrostatic free-surface flows involving water?waves. Int. J. Numer. Meth. Fluids, 48, 169-197.? 

  42. Zijlema, M. and Stelling, G.S. (2008). Efficient computation of surf?zone waves using the nonlinear shallow water equations with?non-hydrostatic pressure. Coastal Engineering, 55, 780-790.? 

  43. Zijlema, M., Stelling, G. and Smit, P. (2011). SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engineering, 58,?992-1012.? 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로