$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

베타카로틴 함유 키토산/하이알루론산 나노캡슐의 용해도 및 재분산성 특성
Properties of β-carotene-loaded chitosan/hyaluronic acid nanocapsules: solubility and redispersibility 원문보기

한국식품과학회지 = Korean journal of food science and technology, v.54 no.1, 2022년, pp.66 - 74  

안은정 (한양대학교 식품영양학과) ,  이지수 (한양대학교 식품영양학과) ,  이현규 (한양대학교 식품영양학과)

초록
AI-Helper 아이콘AI-Helper

β-Carotene의 용해도를 증진시키기 키토산을 기본 피복물질로 사용하면서 TPP와 HA를 단독 또는 복합적으로 사용하여 세 종류(CS/TPP, CS/TPP/HA와 CS/HA)의 나노캡슐을 제조하였다. 모든 종류의 나노캡슐에서 95%가 넘는 높은 포집효율이 관측되었다. β-Carotene 에멀젼의 저장안정성이 취약한 pH 2-3 조건에서 8일동안 저장하였을 때 CS/TPP/HA와 CS/HA 나노캡슐의 물리적 특성뿐만 아니라 β-carotene의 용해도 또한 안정적으로 유지되는 경향을 나타냈다. β-Carotene의 용해도를 나노캡슐의 건조 전과 후 관측한 결과, 대조군에 비해서 나노캡슐화에 의해서 유의적으로 향상된 것을 확인할 수 있었다. 특히 CS/HA 나노캡슐은 용해도와 재분산성의 측면에서 모두 우수한 특성을 나타냈다. 본 연구를 통해서 CS/HA 나노캡슐은 β-carotene과 같은 난용성 활성성분의 용해도를 증진시킬 수 있는 식품산업에 활용가능한 전달체로서 이용 가능성이 높을 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

To improve the solubility of β-carotene, three types of β-carotene-loaded nanocapsules were prepared using chitosan (CS) and two cross-linkers, sodium tripolyphosphate (TPP) and hyaluronic acid (HA), alone or in combination (CS-TPP, CS-TPP-HA, and CS-HA). The entrapment efficiency of a...

주제어

표/그림 (7)

참고문헌 (46)

  1. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J. Control Release 100: 5-28 (2004) 

  2. Akentieva N, Gizatullin A, Silvestre O, Savchuk O, Shkondina N, Prichodchenko T, Mitschenko D, Zhilenkov A, Troshin P, Sanina N, "IOP Conference Series: Materials Science and Engineering," ed. eds. IOP Publishing, pp. 012002 (2020). 

  3. Almalik A, Alradwan I, Majrashi MA, Alsaffar BA, Algarni AT, Alsuabeyl MS, Alrabiah H, Tirelli N, Alhasan AH. Cellular responses of hyaluronic acid-coated chitosan nanoparticles. Toxicol. Res. 7: 942-950 (2018) 

  4. Bushrab N, Muller R. Nanocrystals of poorly soluble drugs for oral administration. J. New Drugs 5: 20-22 (2003) 

  5. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63: 125-132 (1997) 

  6. Canfield LM, Fritz TA, Tarara TE. Incorporation of β-carotene into mixed micelles. Method. Enzymol. 189: 418-422 (1990) 

  7. Chen J, Li F, Li Z, McClements DJ, Xiao H. Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of β-carotene water-dispersibility and chemical stability. Food Hydrocoll. 69: 49-55 (2017) 

  8. Chiesa E, Dorati R, Conti B, Modena T, Cova E, Meloni F, Genta I. Hyaluronic acid-decorated chitosan nanoparticles for CD44-targeted delivery of everolimus. Int. J. Mol. Sci. 19: 2310 (2018) 

  9. Chung JH, Lee J-S, Lee HG. Resveratrol-loaded chitosan-γ-poly (glutamic acid) nanoparticles: Optimization, solubility, UV stability, and cellular antioxidant activity. Colloid Surf. B. 186: 110702 (2020) 

  10. Desobry SA, Netto FM, Labuza TP. Preservation of β-carotene from carrots. Crit. Rev. Food Sci. 38: 381-396 (1998) 

  11. Du J, Zhang S, Sun R, Zhang LF, Xiong CD, Peng YX. Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. II. Release of albumin in vitro. J. Biomed. Mater. Res. B 72: 299-304 (2005) 

  12. Dubal DB, Rau SW, Shughrue PJ, Zhu H, Yu J, Cashion AB, Suzuki S, Gerhold LM, Bottner MB, Dubal SB. Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ERα in estradiol-mediated protection against delayed cell death. Endocrinology 147: 3076 (2006) 

  13. Dyer A, Hinchcliffe M, Watts P, Castile J, Jabbal-Gill I, Nankervis R, Smith A, Illum L. Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm. Res. 19: 998-1008 (2002) 

  14. Dziezak JD. Microencapsulation and encapsulated ingredients. Food Technol. 42: 136-153 (1988) 

  15. Fang JY, Chen JP, Leu YL, Hu JW. Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery. Eur. J. Pharm. Biopharm. 68: 626-636 (2008) 

  16. Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloid Surf. B. 44: 65-73 (2005) 

  17. Giorgio S. The stability of β-carotene under different laboratory conditions. J. Nutr. Biochem. 3: 124-128 (1992) 

  18. Goa KL, Benfield P. Hyaluronic acid. A review of its pharmacology and use as a surgical aid in ophthalmology, and its therapeutic potential in joint disease and wound healing. Drugs 47: 536 (1994) 

  19. Gryparis E, Mattheolabakis G, Bikiaris D, Avgoustakis K. Effect of conditions of preparation on the size and encapsulation properties of PLGA-mPEG nanoparticles of cisplatin. Drug Deliv. 14: 371-380 (2007) 

  20. Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int. J. Pharm. 299: 167-177 (2005) 

  21. Jang KI, Lee HG. Stability of chitosan nanoparticles for l-ascorbic acid during heat treatment in aqueous solution. J. Agr. Food Chem. 56: 1936-1941 (2008) 

  22. Karathanos VT, Mourtzinos I, Yannakopoulou K, Andrikopoulos NK. Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chem. 101: 652-658 (2007) 

  23. Kim A, Checkla DM, Dehazya P, Chen W. Characterization of DNA-hyaluronan matrix for sustained gene transfer. J. Control Release 90: 81-95 (2003) 

  24. Kittikaiwan P, Powthongsook S, Pavasant P, Shotipruk A. Encapsulation of Haematococcus pluvialis using chitosan for astaxanthin stability enhancement. Carbohyd. Polym. 70: 378-385 (2007) 

  25. Kumar A, Sahoo SK, Padhee K, Kochar PPS, Satapathy A, Pathak N. Review on solubility enhancement techniques for hydrophobic drugs. Int. J. Compr. Pharm. 3 (2011) 

  26. Liu D, Gao Y, Kispert LD. Electrochemical properties of natural carotenoids. J. Electroanal. Chem. 488: 140-150 (2000) 

  27. Lopez-Leon T, Carvalho E, Seijo B, Ortega-Vinuesa J, Bastos-Gonzalez D. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J. Colloid Interf. Sci. 283: 344-351 (2005) 

  28. Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J. Control Release 69: 169-184 (2000) 

  29. Mangels AR, Holden JM, Beecher GR, Forman MR, Lanza E. Carotenoid content of fruits and vegetables: An evaluation of analytic data. J. Am. Diet. Assoc. 93: 284-296 (1993) 

  30. Mauludin R, Muller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur. J. Pharm. Sci. 36: 502-510 (2009) 

  31. McClements D, Decker E, Weiss J. Emulsion-based delivery systems for lipophilic bioactive components. J. Food Sci. 72: R109-R124 (2007) 

  32. Milne DB, Botnen J. Retinol, alpha-tocopherol, lycopene, and alpha-and beta-carotene simultaneously determined in plasma by isocratic liquid chromatography. Clin. Chem. 32: 874 (1986) 

  33. Oh EJ, Kim J-W, Kong J-H, Ryu SH, Hahn SK. Signal transduction of hyaluronic acid-peptide conjugate for formyl peptide receptor like 1 receptor. Bioconjugate Chem. 19: 2401-2408 (2008) 

  34. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens Jr FL, Valanis B, Williams Jr JH. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. New Engl. J. Med. 334: 1150-1155 (1996) 

  35. Orset S, Leach GC, Morais R, Young AJ. Spray-drying of the micro alga Dunaliella salina: Effects on β-carotene content and isomer composition. J. Agr. Food Chem. 47: 4782-4790 (1999) 

  36. Pereira FM, Melo MN, Santos AKM, Oliveira KV, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzyme Microb. Tech. 150: 109889 (2021) 

  37. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomed. Nanotechnol. 2: 53-65 (2006) 

  38. Qian C, Decker EA, Xiao H, McClements DJ. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chem. 132: 1221-1229 (2012) 

  39. Shao P, Qiu Q, Xiao J, Zhu Y, Sun P. Chemical stability and in vitro release properties of β-carotene in emulsions stabilized by Ulva fasciata polysaccharide. Int. J. Biol. Macromol. 102: 225-231 (2017) 

  40. Silva HD, Cerqueira MA, Souza BWS, Ribeiro C, Avides MC, Quintas MAC, Coimbra JSR, Carneiro-Da-Cunha MG, Vicente AA. Nanoemulsions of β-carotene using a high-energy emulsification-evaporation technique. J. Food Eng. 102: 130-135 (2011) 

  41. Tang D-W, Yu S-H, Wu W-S, Hsieh H-Y, Tsai Y-C, Mi F-L. Hydrogel microspheres for stabilization of an antioxidant enzyme: effect of emulsion cross-linking of a dual polysaccharide system on the protection of enzyme activity. Colloid Surf. B. 113: 59-68 (2014) 

  42. Trela BC, Waterhouse AL. Resveratrol: Isomeric molar absorptivities and stability. J. Agr. Food Chem. 44: 1253-1257 (1996) 

  43. Tsai ML, Chen RH, Bai SW, Chen WY. The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer. Carbohyd. Polym. 84: 756-761 (2011) 

  44. Xu D, Wang X, Jiang J, Yuan F, Decker EA, Gao Y. Influence of pH, EDTA, α-tocopherol, and WPI oxidation on the degradation of β-carotene in WPI-stabilized oil-in-water emulsions. LWT-Food Sci. Technol. 54: 236-241 (2013) 

  45. Yazdani M, Tavakoli O, Khoobi M, Wu YS, Faramarzi MA, Gholibegloo E, Farkhondeh S. Beta-carotene/cyclodextrin-based inclusion complex: improved loading, solubility, stability, and cytotoxicity. J. Incl. Phenom. Macrocycl. Chem. 102: 1-10 (2021) 

  46. Zheng Y, Yang W, Wang C, Hu J, Fu S, Dong L, Wu L, Shen X. Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: preparation, characterization and the use for 5-fluorouracil delivery. Eur. J. Pharm. Biopharm. 67: 621-631 (2007) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로