$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기후변화에 따른 강수 특성 변화 분석을 위한 대규모 기후 앙상블 모의자료 적용
Application of the Large-scale Climate Ensemble Simulations to Analysis on Changes of Precipitation Trend Caused by Global Climate Change 원문보기

대기 = Atmosphere, v.32 no.1, 2022년, pp.1 - 15  

김영규 (충남대학교 토목공학과) ,  손민우 (충남대학교 토목공학과)

Abstract AI-Helper 아이콘AI-Helper

Recently, Japan's Meteorological Research Institute presented the d4PDF database (Database for Policy Decision-Making for Future Climate Change, d4PDF) through large-scale climate ensemble simulations to overcome uncertainty arising from variability when the general circulation model represents extr...

주제어

표/그림 (12)

참고문헌 (64)

  1. Alam, M. S., and A. Elshorbagy, 2015: Quantification of the climate change-induced variations in Intensity-Duration-Frequency curves in the Canadian Prairies. J. Hydrol., 527, 990-1005, doi:10.1016/j.jhydrol.2015.05.059. 

  2. Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos., 111, D05109. 

  3. Alfieri, L., P. Burek, L. Feyen, and G. Forzieri, 2015: Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci., 19, 2247-2260, doi:10.5194/hess-19-2247-2015. 

  4. Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481-1484. 

  5. Cheng, L., and A. AghaKouchak, 2014: Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Sci. Rep., 4, 7093, doi:10.1038/srep07093. 

  6. Christidis, N., G. S. Jones, and P. A. Stott, 2015: Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change, 5, 46-50, doi:10.1038/nclimate2468. 

  7. Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-System model-HadGEM2. Geosci. Model Dev., 4, 1051-1075, doi:10.5194/gmd4-1051-2011. 

  8. Doll, P., T. Trautmann, D. Gerten, H. M. Schmied, S. Ostberg, F. Saaed, and C.-F. Schleussner, 2018: Risks for the global freshwater system at 1.5℃ and 2℃ global warming. Environ. Res. Lett., 13, 044038, doi:10.1088/1748-9326/aab792. 

  9. Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O'Gorman, and N. Maher, 2016: More extreme precipitation in the world's dry and wet regions. Nat. Clim. Change, 6, 508-513, doi:10.1038/nclimate2941. 

  10. Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 3484-3519, doi:10.1175/2011JCLI3955.1. 

  11. Duan, W., N. Hanasaki, H. Shiogama, Y. Chen, S. Zou, D. Nover, B. Zhou, and Y. Wang, 2019: Evaluation and future projection of Chinese precipitation extremes using large ensemble high-resolution climate simulations. J. Climate, 32, 2169-2183, doi:10.1175/JCLID-18-0465.1. 

  12. Elshorbagy, A., K. Lindenas, and H. Azinfar, 2018: Risk-based quantification of the impact of climate change on storm water infrastructure. Water Sci., 32, 102-114, doi:10.1016/j.wsj.2017.12.003. 

  13. Faye, B., and Coauthors, 2018: Impacts of 1.5 versus 2.0℃ on cereal yields in the West African Sudan Savanna. Environ. Res. Lett., 13, 034014, doi:10.1088/1748-9326/aaab40. 

  14. Felix, M. L., Y.-K. Kim, M. Choi, J.-C. Kim, X. K. Do, T. H. Nguyen, and K. Jung, 2021: Detailed trend analysis of extreme climate indices in the upper Geum River basin. Water, 13, 3171, doi:10.3390/w13223171. 

  15. Fischer, E. M., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change, 5, 560-564, doi:10.1038/nclimate2617. 

  16. Gent, P. R., and Coauthors, 2011: The community climate system model version 4. J. Climate, 24, 4973-4991, doi:10.1175/2011JCLI4083.1. 

  17. Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572-597, doi:10.1002/jame.20038. 

  18. Guhathakurta, P., O. P. Sreejith, and P. A. Menon, 2011: Impact of climate change on extreme rainfall events and flood risk in India. J. Earth Syst. Sci., 120, 359-373, doi:10.1007/s12040-011-0082-5. 

  19. Haddad, K., and A. Rahman, 2011: Selection of the best fit flood frequency distribution and parameter estimation procedure: a case study for Tasmania in Australia. Stoch. Environ. Res. Risk Assess., 25, 415-428, doi:10.1007/s00477-010-0412-1. 

  20. Hanittinan, P., Y. Tachikawa, and T. Ram-Indra, 2020: Projection of hydroclimate extreme indices over the Indochina region under climate change using a large single-model ensemble. Int. J. Climatol., 40, 2924-2952, doi:10.1002/joc.6374. 

  21. Hardwick Jones, R., S. Westra, and A. Sharma, 2010: Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett., 37, L22805, doi:10.1029/2010GL045081. 

  22. Her, Y., S.-H. Yoo, J. Cho, S. Hwang, J. Jeong, and C. Seong, 2019: Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions. Sci. Rep., 9, 4974, doi:10.1038/s41598-019-41334-7. 

  23. Herath, S. M., R. Sarukkalige, and V. T. Van Nguyen, 2018: Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia. J. Hydrol., 556, 1171-1181, doi:10.1016/j.jhydrol.2017.01.060. 

  24. Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 83-95, doi:10.1016/j.jhydrol.2005.07.003. 

  25. Hwang, J., J. Ahn, C. Jeong, and J.-H. Heo, 2018: A study on the variation of design flood due to climate change in the ungauged urban catchment. J. Korea Water Resour. Assoc., 51, 395-404, doi:10.3741/JKWRA.2018.51.5.395 (in Korean with English abstract). 

  26. Ishii, M., and N. Mori, 2020: d4PDF: large-ensemble and high-resolution climate simulations for global warming risk assessment. Prog. Earth Planet. Sci., 7, 58, doi:10.1186/s40645-020-00367-7. 

  27. Jakob, D., and D. Walland, 2016: Variability and long-term change in Australian temperature and precipitation extremes. Weather Clim. Extrem., 14, 36-55, doi:10.1016/j.wace.2016.11.001. 

  28. Jang, D. W., B. S. Kim, and J. H. Kim, 2012: The quantification of disaster impact of extreme rainfall under climate change in Korea. J. Korean Soc. Hazard Mitig., 12, 169-178, doi:10.9798/KOSHAM.2012.12.4.169 (in Korean with English abstract). 

  29. Ji, Z., and S. Kang, 2015: Evaluation of extreme climate events using a regional climate model for China. Int. J. Climatol., 35, 888-902, doi:10.1002/joc.4024. 

  30. Kay, J. E., and Coauthors, 2015: The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 1333-1349, doi:10.1175/BAMS-D13-00255.1. 

  31. Kim, Y.-H., S.-K. Min, X. Zhang, F. Zwiers, L. V. Alexander, M. G. Donat, and Y.-S. Tung, 2016: Attribution of extreme temperature changes during 1951~2010. Climate Dyn., 46, 1769-1782, doi:10.1007/s00382-015-2674-2. 

  32. Kumar, N., V. Poonia, B. B. Gupta, and M. K. Goyal, 2021: A novel framework for risk assessment and resilience of critical infrastructure towards climate change. Technol. Forecast. Soc. Change, 165, 120532, doi:10.1016/j.techfore.2020.120532. 

  33. Kunkel, K. E., and Coauthors, 2013a: Regional Climate Trends and Scenarios for the U.S. National Climate Assessment Part 4. Climate of the US Great Plains. NOAA Tech. Rep. NESDIS 142-4, 91 pp. 

  34. Kunkel, K. E., T. R. Karl, D. R. Easterling, K. Redmond, J. Young, X. Yin, and P. Hennon, 2013b: Probable maximum precipitation and climate change. Geophys. Res. Lett., 40, 1402-1408, doi:10.1002/grl.50334. 

  35. Lavender, S. L., K. J. E. Walsh, L.-P. Caron, M. King, S. Monkiewicz, M. Guishard, Q. Zhang, and B. Hunt, 2018: Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models. Sci. Adv., 4, eaat6509, doi:10.1126/sciadv.aat6509. 

  36. Lee, M.-H., E.-S. Im, and D.-H. Bae, 2019: A comparative assessment of climate change impacts on drought over Korea based on multiple climate projections and multiple drought indices. Climate Dyn., 53, 389-404, doi:10.1007/s00382-018-4588-2. 

  37. Li, S., P. W. Mote, D. E. Rupp, D. Vickers, R. Mera, and M. Allen, 2015: Evaluation of a regional climate modeling effort for the western United States using a superensemble from weather@home. J. Climate, 28, 7470-7488, doi:10.1175/JCLI-D-14-00808.1. 

  38. Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378-381, doi:10.1038/nature09763. 

  39. Mizuta, R., and Coauthors, 2017: Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models. Bull. Amer. Meteorol. Soc., 98, 1383-1398, doi:10.1175/BAMSD-16-0099.1. 

  40. Mori, N., T. Shimura, K. Yoshida, R. Mizuta, Y. Okada, M. Fujita, T. Khujanazarov, and E. Nakakita, 2019: Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model. Coast. Eng. J., 61, 295-307, doi:10.1080/21664250.2019.1586290. 

  41. Mote, P. W., M. R. Allen, R. G. Jones, S. Li, R. Mera, D. E. Rupp, A. Salahuddin, and D. Vickers, 2016: Superensemble regional climate modeling for the western United States. Bull. Amer. Meteor. Soc., 97, 203-215, doi:10.1175/BAMS-D-14-00090.1. 

  42. Nissen, K. M., and U. Ulbrich, 2017: Increasing frequencies and changing characteristics of heavy precipitation events threatening infrastructure in Europe under climate change. Nat. Hazards Earth Syst. Sci., 17, 1177-1190, doi:10.5194/nhess-17-1177-2017. 

  43. Noor, M., T. Ismail, E.-S. Chung, S. Shahid, and J. H. Sung, 2018: Uncertainty in rainfall intensity duration frequency curves of peninsular Malaysia under changing climate scenarios. Water, 10, 1750, doi:10.3390/w10121750. 

  44. Pachauri, R. K., and Coauthors, 2014: Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, 151 pp. 

  45. Peterson, T. C., and M. J. Manton, 2008: Monitoring changes in climate extremes: a tale of international collaboration. Bull. Amer. Meteor. Soc., 89, 1266-1271. 

  46. Saddique, N., A. Khaliq, and C. Bernhofer, 2020: Trends in temperature and precipitation extremes in historical (1961~1990) and projected (2061~2090) periods in a data scarce mountain basin, northern Pakistan. Stoch. Environ. Res. Risk Assess., 34, 1441-1455, doi:10.1007/s00477-020-01829-6. 

  47. Sasaki, H., K. Kurihara, I. Takayabu, and T. Uchiyama, 2008: Preliminary experiments of reproducing the present climate using the non-hydrostatic regional climate model. SOLA, 4, 25-28, doi:10.2151/sola.2008-007. 

  48. Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. In C. B. Field et al. Eds., Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, IPCC, Cambridge University Press, 109-230. 

  49. Sharma, A., and M. K. Goyal, 2020: Assessment of the changes in precipitation and temperature in Teesta River basin in Indian Himalayan Region under climate change. Atmos. Res., 231, 104670, doi:10.1016/j.atmosres.2019.104670. 

  50. Sung, J. H., H.-I. Eum, J. Park, and J. Cho, 2018: Assessment of climate change impacts on extreme precipitation events: Applications of CMIP5 climate projections statistically downscaled over South Korea. Adv. Meteorol., 2018, 4720523, doi:10.1155/2018/4720523. 

  51. Tanaka, T., Y. Tachikawa, Y. Ichikawa, and K. Yorozu, 2018: Flood risk curve development with probabilistic rainfall modelling and large ensemble climate simulation data: A case study for the Yodo river basin. Hydrol. Res. Lett., 12, 28-33, doi:10.3178/hrl.12.28. 

  52. Tanaka, T., K. Kiyohara, and Y. Tachikawa, 2020: Comparison of fluvial and pluvial flood risk curves in urban cities derived from a large ensemble climate simulation dataset: A case study in Nagoya, Japan. J. Hydrol., 584, 124706, doi:10.1016/j.jhydrol.2020.124706. 

  53. Tanaka, T., K. Kobayashi, and Y. Tachikawa, 2021: Simultaneous flood risk analysis and its future change among all the 109 class-A river basins in Japan using a large ensemble climate simulation database d4PDF. Environ. Res. Lett., 16, 074059, doi:10.1088/1748-9326/abfb2b. 

  54. Tang, J., X. Niu, S. Wang, H. Gao, X. Wang, and J. Wu, 2016: Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. J. Geophys. Res., 121, 2110-2129, doi:10.1002/2015JD023977. 

  55. Trenberth, K. E., 2011: Changes in precipitation with climate change. Clim. Res., 47, 123-138, doi:10.3354/cr00953. 

  56. Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741-758. 

  57. Utsumi, N., S. Seto, S. Kanae, E. E. Maeda, and T. Oki, 2011: Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett., 38, L16708, doi:10.1029/2011GL048426. 

  58. Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845-872, doi:10.5194/gmd-4-845-2011. 

  59. Wazneh, H., M. A. Arain, and P. Coulibaly, 2020: Climate indices to characterize climatic changes across southern Canada. Meteorol. Appl., 27, e1861, doi:10.1002/met.1861. 

  60. Yang, J.-A., S. Kim, N. Mori, and H. Mase, 2018: Assessment of long-term impact of storm surges around the Korean Peninsula based on a large ensemble of climate projections. Coast. Eng., 142, 1-8, doi:10.1016/j.coastaleng.2018.09.008. 

  61. Yin, H., and Y. Sun, 2018: Detection of anthropogenic influence on fixed threshold indices of extreme temperature. J. Climate, 31, 6341-6352, doi:10.1175/JCLID-17-0853.1. 

  62. Yukimoto, S., and Coauthors, 2012: A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 -Model Description and Basic Performance-. J. Meteor. Soc. Japan. Ser. II, 90A, 23-64, doi:10.2151/jmsj.2012-A02. 

  63. Zhang, Y., Y. Xu, W. Dong, L. Cao, and M. Sparrow, 2006: A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys. Res. Lett., 33, L24702, doi:10.1029/2006GL027229. 

  64. Zhao, A. D., D. S. Stevenson, and M. A. Bollasina, 2019: The role of anthropogenic aerosols in future precipitation extremes over the Asian Monsoon Region. Climate Dyn., 52, 6257-6278, doi:10.1007/s00382-018-4514-7. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로