$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 용담댐 기존운영에 대한 의사결정중심 기후변화 영향 평가
A decision-centric impact assessment of operational performance of the Yongdam Dam, South Korea 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.55 no.3, 2022년, pp.205 - 215  

김대하 (전북대학교 토목환경자원에너지공학부) ,  김은희 (전북대학교 토목환경자원에너지공학부) ,  이승철 (전북대학교 토목환경자원에너지공학부) ,  김은지 (전북대학교 토목환경자원에너지공학부) ,  신준 (전북대학교 토목환경자원에너지공학부)

초록
AI-Helper 아이콘AI-Helper

대기온실가스 증가로 인해 전지구 평균기온은 이미 1.0℃ 이상 상승했고 폭염, 가뭄, 홍수 등 극한 기상현상의 빈도는 점점 더 높아질 것으로 전망되고 있다. 본 연구에서는 전북·충청지역의 이·치수안전도 확보에 큰 역할을 하고 있는 용담댐의 기존 운영방식이 기후변화에 얼마나 취약한 지 의사결정 지표를 중심으로 평가하였다. 현실적인 기후 스트레스 테스트를 위해 GR6J 강우-유출 모형, Random Forests 댐운영 모형을 관측자료에 적합시켰고 추계학적 기법으로 생성된 294개의 기후스트레스 시계열을 모형에 입력해 연최대일방류량, 저수량신뢰도, 공급신뢰도의 변화를 분석하였다. 그 결과 2021~2040년 기간 용담댐 저수량신뢰도는 과도한 수준으로 증가할 것으로 전망되었고 이에 반해 공급신뢰도의 증가는 저수량 신뢰도에 미치지 못할 것으로 나타났다. 평균강수량과 강수변동성의 증가로 20년 빈도 연최대방류량은 50%의 확률로 43% 증가할 것으로 나타났다. 용담댐의 기존운영방식은 저수량 확보에 과도하게 치중되어 있는 것으로 판단되며 이 운영이 지속될 경우 용담댐 하류지역의 홍수위험은 더 가중될 것으로 예상된다.

Abstract AI-Helper 아이콘AI-Helper

Amidst the global climate crisis, dam operation policies formulated under the stationary climate assumption could lead to unsatisfactory water management. In this work, we assessed status-quo performance of the Yongdam Dam in Korea under various climatic stresses in flood risk reduction and water su...

주제어

표/그림 (8)

참고문헌 (47)

  1. Apipattanavis, S., Podesta, G., Rajagopalan, B., and Katz, R.W. (2007). "A semiparametric multivariate and multisite weather generator." Water Resources Research, Vol. 43, W11401. 

  2. Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R.W.A., Heinke, J., von Bloh, W., and Gerten, D. (2011). "Impact of reservoirs on river discharge and irrigation water supply during the 20th century." Water Resources Research, Vol. 47, W03509. 

  3. Breda, J.P.L.F., de Paiva, R.C.D., Collischon, W., Bravo, J.M., Siqueira, V.A., and Steinke, E.B. (2020). "Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections." Climatic Change, Vol. 159, pp. 503-522. 

  4. Breiman, L. (2001). "Random forests." Machine Learning, Vol. 45, pp. 5-32. 

  5. Breiman, L., Friedman, J., Olshen, R., Stone, C., Steinberg, D., and Colla, P. (1984). CART: Classification and regression trees. Routledge, New York, NY, U.S. 

  6. Brown, C., and Wilby, R.L. (2012). "An alternate approach to assessing climate risks." Eos Transactions American Geophysical Union, Vol. 93, pp. 401-402. 

  7. Brown, C., Ghile, Y., Laverty, M., and Li, K. (2012). "Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector." Water Resources Research, Vol. 48, W09537. 

  8. Brutsaert, W. (2017). "Global land surface evaporation trend during the past half century: Corroboration by Clausius-Clapeyron scaling." Advances in Water Resources, Vol. 106, pp. 3-5. 

  9. Burger, G, Sobie, S.R., Cannon, A.J., Werner, A.T., and Murdock, T.Q. (2013). "Downscaling extremes: An intercomparison of multiple meth-ods for future climate." Journal of Climate, Vol. 26, pp. 3429-3449. 

  10. Dai, A. (2013). "Increasing drought under global warming in observations and models." Nature Climate Change, Vol. 3, pp. 52-58. 

  11. Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J., and Pasteris, P.P. (2008). "Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States." International Journal of Climatology, Vol. 28, pp. 2031-2064. 

  12. Ehsani, N., Vorosmarty, C.J., Fekete, B.M., and Stakhiv, E.Z. (2017). "Reservoir operations under climate change: Storage capacity options to mitigate risk." Journal of Hydrology, Vol. 555, pp. 435-446. 

  13. Emami, K. (2020). "Adaptive flood risk management. Irrigation and Drainage." Vol. 69, No. 2, pp. 230-242. 

  14. Foley, M.M., Bellmore, J.R., O'Connor, J.E., Duda, J.J., East, A.E., Grant, G.E., Anderson, C.W., Bountry, J.A., Collins, M.J., Connolly, P.J., and Craig, L.S. (2017). "Dam removal: Listening in." Water Resources Research, Vol. 53, pp. 5229-5246. 

  15. Georgakakos, A.P., Yao, H., Kistenmacher, M., Georgakakos, K.P., Graham, N.E., Cheng, F.-Y., Spencer, C., and Shamir, E. (2012). "Value of adaptive water resources management in Northern California under climatic variability and change: Reservoir management." Journal of Hydrology, Vol. 412-413, pp. 34-46. 

  16. Gupta, H.V., Kling, H., Yilmaz, K.K., and Martinez, G.F. (2009). "Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling." Journal of Hydrology, Vol. 377, pp. 80-91. 

  17. Hashimoto, T., Stedinger, J.R., and Loucks, D.P. (1982). "Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation." Water Resources Research, Vol. 18, pp. 14-20. 

  18. Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S. (2013). "Global flood risk under climate change." Nature Climate Change, Vol. 3, pp. 816-821. 

  19. Intergovernmental Panel on Climate Change (IPCC) (2013). Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Edited by Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M., Cambridge University Press, Cambridge, UK and New York, NY, U.S. 

  20. Intergovernmental Panel on Climate Change (IPCC) (2021). Summary for Policymakers. In: Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Edited by Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekci, O., Yu, R., and Zhou, B., In Press. 

  21. Jeong, Y., and Eum, H.-I. (2015). "Application of a statistical interpolation method to correct extreme values in high-resolution gridded climate variables." Journal of Climate Chnage Research, Vol. 6, pp. 331-334. 

  22. Kim, D., and Chun, J.A. (2021). "Revisiting a two-parameter Budyko equation with the complementary evaporation principle for proper consideration of surface energy balance." Water Resources Research, Vol. 57, e2021WR030838. 

  23. Kim, D., Chun, J.A., and Aikins, C.M. (2018). "An hourly-scale scenario-neutral flood risk assessment in a mesoscale catchment under climate change." Hydrological Processes, Vol. 32, pp. 3416-3430. 

  24. Kim, D., Chun, J.A., and Choi, S.J. (2019). "Incorporating the logistic regression into a decision-centric assessment of climate change impacts on a complex river system." Hydrology and Earth System Sciences, Vol. 23, pp. 1145-1162. 

  25. Knighton, J., Steinschneider, S., and Walter, M.T. (2017). "A vulnerability-based, bottom-up assessment of future riverine flood risk using a modified peaks-over-threshold approach and a physically based hydrologic model." Water Resources Research, Vol. 53, pp. 10043-10064. 

  26. K-water (2019). The handbook of water management in practice. 

  27. Kwon, H.H., Lall, U., and Khalil, A.F. (2007). "Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature." Water Resources Research, Vol. 43, W05407. 

  28. Meinshausen, M., Nicholls, Z.R., Lewis, J., Gidden, M.J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., and Canadell, J.G. (2020). "The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500." Geoscientific Model Development, Vol. 13, pp. 3571-3605. 

  29. Mok, J.Y., Choi, J.H., and Moon, Y.I. (2020). "Prediction of multipurpose dam inflow using deep learning." Journal of Korea Water Resources Association, Vol. 53, pp. 97-105. 

  30. Nilsson, C., Reidy, C.A., Dynesius, M., and Revenga, C. (2005). "Fragmentation and flow regulation of the world's large river systems." Science, Vol. 308, pp. 405-408. 

  31. Penman, H.L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 193, No. 1032, pp. 120-145. 

  32. Perrin, C., Michel, C., and Andreassian, V. (2003). "Improvement of a parsimonious model for streamflow simulation." Journal of Hydrology, Vol. 279, pp. 275-289. 

  33. Poff, N.L., Brown, C.M., Grantham, T.E., Matthews, J.H., Palmer, M.A., Spence, C.M., Wilby, R.L., Haasnoot, M., Mendoza, G.F., Dominique, K.C., and Baeza, A. (2016). "Sustainable water management under future uncertainty with eco-engineering decision scaling." Nature Climate Change, Vol. 6, pp. 25-34. 

  34. Poncelet, C., Merz, R., Merz, B., Parajka, J., Oudin, L., Andreassian, V., and Perrin, C. (2017). "Process-based interpretation of conceptual hydrological model performance using a multinational catchment set." Water Resources Research, Vol. 53, pp. 7247-7268. 

  35. Priestley, C.H.B., and Taylor, R.J. (1972). "On the assessment of surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92. 

  36. Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T., and Andreassian, V. (2011). "A downward structural sensitivity analysis of hydrological models to improve low-flow simulation." Journal of Hydrology, Vol. 411, pp. 66-76. 

  37. Quinn, J.D., Hadjimichael, A., Reed, P.M., and Steinschneider, S., (2020). "Can exploratory modeling of water scarcity vulnerabilities and robustness be scenario neutral?" Earth's Future, Vol. 8, e2020EF001650. 

  38. Raje, D., and Mujumdar, P.P. (2011). "A comparison of three methods for downscaling daily precipitation in the Punjab region." Hydrological Processes, Vol. 25, pp. 3575-3589. 

  39. Steinschneider, S., and Brown, C. (2013). "A semiparametric multivariate, multisite weather generator with low-frequency variability for use in climate risk assessments." Water Resources Research, Vol. 49, pp. 7205-7220. 

  40. Steinschneider, S., Wi, S., and Brown, C. (2015). "The integrated effects of climate and hydrologic uncertainty on future flood risk assessments." Hydrological Processes, Vol. 29, pp. 2823-2839. 

  41. Szilagyi, J., Crago, R., and Qualls, R. (2017). "A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology. Journal of Geophysical Research: Atmospheres, Vol. 122, pp. 264-278. 

  42. Thinda, K.T., Ogundeji, A.A., Belle, J.A., Ojo, T.O. (2020). "Understanding the adoption of climate change adaptation strategies among smallholder farmers: Evidence from land reform beneficiaries in South Africa." Land Use Policy, Vol. 99, 104858. 

  43. Trenberth, K.E., Dai, A., Van Der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., and Sheffield, J. (2014). "Global warming and changes in drought." Nature Climate Change, Vol. 4, pp. 17-22. 

  44. Turner, T.E., Swindles, G.T., and Roucoux, K.H. (2014). "Late Holocene ecohydrological and carbon dynamics of a UK raised bog: impact of human activity and climate change." Quaternary Science Reviews, Vol. 84, pp. 65-85. 

  45. Weaver, C.P., Lempert, R.J., Brown, C., Hall, J.A., Revell, D., and Sarewitz, D. (2013). "Improving the contribution of climate model information to decision making: The value and demands of robust decision frameworks." WIREs Climate Change, Vol. 4, pp. 39-60. 

  46. Whateley, S., Steinschneider, S., and Brown, C., (2014). "A climate change range-based method for estimating robustness for water resources supply." Water Resources Research, Vol. 50, pp. 8944-8961. 

  47. Yang, T., Gao, X., and Sorooshian, S., Li, X. (2016). "Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled crossvalidation scheme." Water Resources Research, Vol. 52, pp. 1626-1651. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로