$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

영상기반 인체행위분류를 위한 전이학습 중추네트워크모델 분석
Transfer Learning Backbone Network Model Analysis for Human Activity Classification Using Imagery 원문보기

한국시뮬레이션학회논문지 = Journal of the Korea Society for Simulation, v.31 no.1, 2022년, pp.11 - 18  

김종환 ,  류준열 (육군사관학교 기계.시스템공학과)

초록
AI-Helper 아이콘AI-Helper

최근 공공장소 및 시설에서 범죄예방 및 시설 안전을 목적으로 영상정보 기반의 인체의 행위를 분류하는 연구가 활발히 진행되고 있다. 이러한 인체 행위분류의 성능을 향상하기 위해서 대부분의 연구는 전이학습 기반의 딥러닝을 적용하고 있다. 그러나 딥러닝의 기반이 되는 중추 네트워크 모델(Backbone Network Model)의 수가 증가하고 아키텍처가 다양해짐에도 불구하고, 소수의 모델만 사용하는 분위기 때문에 운용목적에 적합한 중추 네트워크 모델을 찾는 연구는 미흡한 실정이다. 본 연구는 영상정보를 기초로 인체 행위를 분류하는 인공지능 모델을 개발하기 위해 최근에 개발된 5가지의 딥러닝 중추 네트워크 모델을 대상으로 전이학습을 적용하고 각 모델의 정확도 및 학습효율 측면에서 비교 및 분석하여 가장 효율이 높은 모델을 제안하였다. 이를 위해, 기본적인 인체 행위가 아닌 운동 종목 기반의 활동적이고 신체접촉이 높은 12가지의 인체 활동을 선정하고 관련된 7,200개의 이미지를 수집하였으며, 5가지의 중추 네트워크 모델에 총 20회의 전이학습을 균등하게 적용하고 학습과정과 결과성능을 통해 인체 행위를 분류하는데 적합한 중추 네트워크 모델을 정량적으로 비교 및 분석하였다. 그 결과 XceptionNet 모델이 학습 및 검증 정확도에서 0.99 및 0.91로, Top 2 및 평균 정밀도에서 0.96 및 0.91로 나타났으며 학습 소요시간은 1,566초, 모델용량의 크기는 260.4MB로 정확도와 학습효율 측면에서 다른 모델보다 높은 성능이 나타남을 확인할 수 있었다. 이러한 결과는 전이학습을 적용하여 인체 행위분류를 진행하는 다양한 연구 분야에 활용되기를 기대한다.

Abstract AI-Helper 아이콘AI-Helper

Recently, research to classify human activity using imagery has been actively conducted for the purpose of crime prevention and facility safety in public places and facilities. In order to improve the performance of human activity classification, most studies have applied deep learning based-transfe...

주제어

표/그림 (9)

참고문헌 (13)

  1. Lu, Y., & Velipasalar, S. (2019). Autonomous human activity classification from wearable multimodal sensors. IEEE Sensors Journal, 19(23), 11403-11412. 

  2. Du, H., He, Y., & Jin, T. (2018, March). Transfer learning for human activities classification using micro-Doppler spectrograms. In 2018 IEEE International Conference on Computational Electromagnetics (ICCEM) (pp. 1-3). IEEE. 

  3. Pucci, L., Testi, E., Favarelli, E., & Giorgetti, A. (2020). Human activities classification using biaxial seismic sensors. IEEE Sensors Letters, 4(10), 1-4. 

  4. Li, H., Shrestha, A., Fioranelli, F., Le Kernec, J., Heidari, H., Pepa, M., ... & Spinsante, S. (2017, October). Multisensor data fusion for human activities classification and fall detection. In 2017 IEEE SENSORS (pp. 1-3). IEEE. 

  5. AlZubi, H. S., Gerrard-Longworth, S., Al-Nuaimy, W., Goulermas, Y., & Preece, S. (2014, September). Human activity classification using a single accelerometer. In 2014 14th UK Workshop on Computational Intelligence (UKCI) (pp. 1-6). IEEE. 

  6. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105. 

  7. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 

  8. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. 

  9. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251-1258). 

  10. Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (pp. 6105-6114). PMLR. 

  11. Al-Stouhi, S., & Reddy, C. K. (2016). Transfer learning for class imbalance problems with inadequate data. Knowledge and information systems, 48(1), 201-228. 

  12. Agarwal, N., Sondhi, A., Chopra, K., & Singh, G. (2021). Transfer learning: Survey and classification. In Smart Innovations in Communication and Computational Sciences (pp. 145-155). Springer, Singapore. 

  13. Jurj, S. L., Opritoiu, F., & Vladutiu, M. (2020, June). Deep Learning-Based Computer Vision Application with Multiple Built-In Data Science-Oriented Capabilities. In International Conference on Engineering Applications of Neural Networks (pp. 47-69). Springer, Cham. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로