최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기공업화학 = Applied chemistry for engineering, v.33 no.2, 2022년, pp.119 - 125
공재민 (경상국립대학교 그린에너지융합연구소) , 남상용 (경상국립대학교 그린에너지융합연구소)
The power conversion efficiency of organic solar cells has reached over 18%. The rapid increase in the efficiency is largely associated with the development of electron acceptors paired with proper electron donor polymers. In this mini review, the progress of organic solar cells is reviewed in terms...
A. Pochettino, Sul comportamento foto-elettrico dell'antracene, Acad. Lincei Rend., 15, 355 (1906).
H. Spanggaard and F. C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Sol. Energy Mater. Sol. Cells, 83, 125-146 (2004).
G. M. Delacote, J. P. Fillard, and F. J. Marco, Electron injection in thin films of copper phtalocyanine, Solid State Commun. 2, 373-376 (1964).
M. Knupfer, Exciton binding energies in organic semiconductors, Appl. Phys. A-Mater., 77, 623-626 (2003).
C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett., 48, 183-185 (1986).
M. Hiramoto, H. Fujiwara, and M. Yokoyama, Three-layered organic solar cell with a photoactive interlayer of codeposited pigments, Appl. Phys. Lett., 58, 1062-1064 (1991).
J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature, 376, 498-500 (1995).
C. Deibel, D. Mack, J. Gorenflot, A. Scholl, S. Krause, F. Reinert, D. Rauh, and V. Dyakonov, Energetics of excited states in the conjugated polymer poly(3-hexylthiophene), Phys. Rev. B, 81, 085202 (2010).
O. V. Mikhnenko, H. Azimi, M. Scharber, M. Morana, P. W. M. Blom, and M. A. Loi, Exciton diffusion length in narrow bandgap polymers, Energ. Environ. Sci., 5, 6960-6965 (2012).
N. S. Sariciftci, L. Smilowitza, A. J. Heeger, and F. Wudl, Photo-induced electron transfer from a conducting polymer to buckminster-fullerene, Science, 258, 1474-1476 (1992).
J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, Preparation and characterization of fulleroid and methanofullerene derivatives, J. Org. Chem., 60, 532-538 (1995).
G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270, 1789-1791 (1995).
S. Zhang, L. Ye, W. Zhao, B. Yang, Q. Wang, and J. Hou, Realizing over 10% efficiency in polymer solar cell by device optimization, Sci. China Chem., 58, 248-256 (2015).
C. Yan, S. Barlow, Z. Wang, H. Yan, A. K.-Y. Jen, S. R. Marder, and X. Zhan, Non-fullerene acceptors for organic solar cells, Nat. Rev. Mater. 3, 18003 (2018).
C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, and Y. Sun, Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells,. Nat. Energy, 6, 605-613 (2021).
H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, 318, 162-163 (1985).
S. Gelinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan, and R. H. Friend, Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes, Science, 343, 512- 516 (2014).
R. Taylor and D. R. M. Walton, The chemistry of fullerenes, Nature, 363, 685-693 (1993).
M. Iyoda and M. Yoshida, Chemistry of fullerenes - the high reactivity and new developments, J Syn. Org. Chem. Jpn., 53, 756-769 (1995).
A. F. Kiely, R. C. Haddon, M. S. Meier, J. P. Selegue, C. P. Brock, B. O. Patrick, G.-W. Wang, and Y. Chen, The first structurally characterized homofullerene (Fulleroid), J. Am. Chem. Soc., 121, 7971-7972 (1999).
N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers, Chem. Phys. Lett., 241, 89-96 (1995).
G. J. Hedley, A. J. Ward, A. Alekseev, C. T. Howells, E. R. Martins, L. A. Serrano, G. Cooke, A. Ruseckas, and I. D. W. Samuel, Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells, Nat. Commun., 4, 2867- 2876 (2013).
W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater., 15, 1617-1622 (2005).
G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes, Adv. Funct. Mater., 17, 1636-1644 (2007).
J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nat. Mater., 6, 497-500 (2007).
M. Lenes, G.-J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells, Adv. Mater., 20, 2116-2119 (2008).
Y. J. He, H. Y. Chen, J. H. Hou, and Y. F. Li, Indene-C-60 bisadduct: a new acceptor for high-performance polymer solar cells, J. Am. Chem. Soc., 132, 1377-1382 (2010).
G. J. Zhao, Y. J. He, and Y. F. Li, 6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-c-60 bisadduct by device optimization, Adv. Mater., 22, 4355-4358 (2010).
J. W. Arbogast, C. S. Foote, Photophysical properties of C70, J. Am. Chem. Soc., 113, 8886-8889 (1991).
M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, and R. A. J. Janssen, Efficient methano [70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells, Angew. Chem. Int. Edit., 42, 3371-3375 (2003).
W.-y. Zhou, S.-s. Xie, S.-f. Qian, T. Zhou, R.-a. Zhao, and G. Wang, Optical absorption spectra of C-70 thin films, J. Appl. Phys., 80, 459-463 (1996).
L. Ye, S. Q. Zhang, W. C. Zhao, H. F. Yao, and J. H. Hou, Highly efficient 2d-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain, Chem. Mater., 26, 3603- 3605 (2014).
H. Yao, W. Zhao, Z. Zheng, Y. Cui, J. Zhang, Z. Wei, and J. Hou, PBDT-TSR: a highly efficient conjugated polymer for polymer solar cells with a regioregular structure, J. Mater. Chem., A, 4, 1708-1713 (2016).
M. A. Izquierdo, R. Broer, and R. W. A. Havenith, Theoretical study of the charge transfer exciton binding energy in semiconductor materials for polymer: fullerene-based bulk heterojunction solar cells, J. Phys. Chem. A, 123, 1233-1242 (2019).
X. Liu, Y. X. Li, K. Ding, and S. Forrest, Energy loss in organic photovoltaics: nonfullerene versus fullerene acceptors, Phys. Rev. Appl., 11, 024060 (2019).
J. H. Hou, O. Inganas, R. H. Friend, and F. Gao, Organic solar cells based on non-fullerene acceptors, Nat. Mater., 17, 119-128 (2018).
S. Y. Leblebici, T. L. Chen, P. Oalde-Veasco, W. L. Yang, and B. W. Ma, Reducing exciton binding energy by increasing thin film permittivity: an effective approach to enhance exciton separation efficiency in organic solar cells, ACS. Appl. Mater. Inter., 5, 10105-10110 (2013).
S. Kraner, R. Scholz, C. Koerner, and K. Leo, Design proposals for organic materials exhibiting a low exciton binding energy, J. Phys. Chem. C, 119, 22820-22825 (2015).
H.-W. Li, Z. Guan, Y. Cheng, T. Lui, Q. Yang, C.-S. Lee, S. Chen, and S.-W. Tsang, On the study of exciton binding energy with direct charge generation in photovoltaic polymers, Adv. Electron. Mater., 2, 1600200 (2016).
M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency, Adv. Mater., 18, 789 (2006).
G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, Design rules for donors in bulk-heterojunction tandem solar cells-towards 15 % energy-conversion efficiency, Adv. Mater., 20, 579 (2008).
Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu, and X. Zhan, An electron acceptor challenging fullerenes for efficient polymer solar cells, Adv. Mater., 27, 1170-1174 (2015).
W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganas, F. Gao, and J. Hou, Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability, Adv. Mater., 28, 4734-4739 (2016).
D. Qian, L. Ye, M. Zhang, Y. Liang, L. Li, Y. Huang, X. Guo, S. Zhang, Z. Tan, and J. Hou, Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state, Macromolecules, 45, 9611-9617 (2012).
J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electrondeficient core, Joule, 3, 1140-1151 (2019).
C. H. Cui and Y. F. Li, High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap non-fullerene acceptors, Energ. Environ. Sci., 12, 3225-3246 (2019).
A. Armin, W. Li, O. J. Sandberg, Z. Xiao, L. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoaee, T. Wang, H. Ade, T. Heumuller, C. Brabec, and P. Meredith, A history and perspective of non-fullerene electron acceptors for organic solar cells, Adv. Energy Mater., 11, 2003570 (2021).
S. Hood, N. Zarrabi, P. Meredith, I. Kassal, and A. Armin, Measuring energetic disorder in organic semiconductors using the photogenerated charge-separation efficiency, J. Phys. Chem. Lett., 10, 3863-3870 (2019).
Y. Liu, Z. L. Zheng, V. Coropceanu, J. L. Bredas, and D. S. Ginger, Lower limits for non-radiative recombination loss in organic donor/acceptor complexes, Mater. Horiz., 9, 325-333 (2022).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.