$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

콜린의 한국인 영양소 섭취기준 제정 검토를 위한 문헌 고찰 및 향후 과제
Literature review and future tasks necessary to establish of Korean Dietary Reference Intake for choline 원문보기

Journal of nutrition and health, v.55 no.2, 2022년, pp.211 - 226  

심유진 (숭의여자대학교 식품영양과) ,  박재희 (경남대학교 식품영양학과) ,  이윤정 (경남대학교 식품영양학과) ,  박은주 (경남대학교 식품영양학과)

초록
AI-Helper 아이콘AI-Helper

콜린은 세포막의 구조적 완전성, 메틸 대사, 아세틸콜린과 같은 신경전달물질 합성, 세포막 (인지질, phospholipids) 투과 신호전달, 지질 및 콜레스테롤 운반과 대사 등에 있어서 복합적으로 작용하고 있는 중요한 영양 성분이다. 콜린은 체내 합성이 가능하지만 요구량을 만족시키기에 불충분하므로 식사를 통해 섭취해야 한다. 미국/캐나다, 호주/뉴질랜드, 유럽, 중국, 대만 등에서는 콜린 충분섭취량과 상한섭취량이 제정되었으나, 일본은 콜린 데이터베이스가 구축되어 있지 않다는 이유로 콜린 Dietary Reference Intakes (DRI) 제정을 고려하고 있지 않다. 우리나라에서도 2020년 Dietary Reference Intakes for Koreans (KDRI) 제·개정 연구에서 콜린의 제정 여부를 검토하였으나 여전히 우리나라 식품을 대상으로 한 콜린 데이터베이스 구축 연구나 한국인을 대상으로 한 콜린 섭취량 조사 등의 연구가 전혀 이루어지지 않고 있어서 콜린 섭취기준의 제정은 어려운 것으로 판단하였다. 다만 2020년 DRI 개·제정을 위한 준비 작업의 일환으로 콜린 섭취량과 질병발생 가능성을 검증하기 위해 1949년부터 최근까지 보고된 문헌검색, 평가 및 문헌요약 작업을 통해 차후 콜린 DRI 제정을 위한 근거를 마련한 것은 본 사업의 성과라고 볼 수 있을 것이다. 인간을 대상으로 한 RCT, 코호트연구, 환자-대조군 연구 및 단면적 관찰 연구를 통해 충분한 양 (400-500 mg/day)의 콜린섭취는 간기능 손상 (지방간), 신경관손상, 심혈관질환 및 유방암 예방의 효과 및 인지기능 개선과 관계가 있는 것으로 판단되는 반면, 높은 수준의 콜린 섭취가 오히려 전립선암과 상관관계가 있다는 부정적인 연구결과도 있었다. 현재로서는 콜린 섭취와 건강결과와의 상관성을 결론짓기에는 연구결과들이 일관성이 부족하고 매우 제한적이고 더욱이 한국인을 대상으로 한 콜린 섭취와 건강결과와의 관련성을 조사한 논문은 전무한 실정이므로 콜린 DRI 제정을 위해서는 한국인을 대상으로 한 충분한 임상실험 결과가 뒷받침되어야 할 것이다.

Abstract AI-Helper 아이콘AI-Helper

Choline, an essential nutrient for humans, is required for the structural integrity of the cell membranes, methyl-group metabolism, synthesis of the neurotransmitter acetylcholine, synthesis of the membrane phospholipid components of the cell membranes, and the transport of lipids and cholesterol. C...

주제어

표/그림 (5)

참고문헌 (78)

  1. Penry JT, Manore MM. Choline: an important micronutrient for maximal endurance-exercise performance? Int J Sport Nutr Exerc Metab 2008; 18(2): 191-203. 

  2. Patterson YK, Bhagwat S, Williams JR, Howe JC, Holden JM, Zeisel SH, et al. USDA Database for the choline content of common foods, release 2. Washington, D.C.: Agricultural Research Service; 2008. 

  3. Food and Nutrition Board, Institute of Medicine. Dietary reference intakes: thiamin, riboflavin, niacin, vitamin B-6, vitamin B012, pantothenic acid, biotin, and choline. Washington, D.C.: National Academy of Sciences; 1998. 

  4. National Health and Medical Research Council, Australian Government Department of Health and Ageing, New Zealand Ministry of Health. Nutrient reference values for Australia and New Zealand. Canberra: National Health and Medical Research Council; 2006. 

  5. European Food Safety Authority. Dietary reference values for choline. EFSA J 2016; 14(8): 4484. 

  6. Ministry of Health and Welfare. A study on revision of nutrient intake standards for Koreans and ensuring efficiency of utilization. Seoul: The Korean Nutrition Society; 2017. 

  7. Ministry of Health, Labour and Welfare of Japan. Dietary reference intakes for Japanese (2020 version). Tokyo: Ministry of Health, Labour and Welfare of Japan; 2020. 

  8. Kwon O, Kim H, Kim J, Hwang JY, Lee J, Yoon MO. The development of the 2020 Dietary Reference Intakes for Korean population: lessons and challenges. J Nutr Health 2021; 54(5): 425-434. 

  9. Fischer LM, daCosta KA, Kwock L, Stewart PW, Lu TS, Stabler SP, et al. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am J Clin Nutr 2007; 85(5): 1275-1285. 

  10. Zeisel SH, Blusztajn JK. Choline and human nutrition. Annu Rev Nutr 1994; 14(1): 269-296. 

  11. Li Z, Vance DE. Phosphatidylcholine and choline homeostasis. J Lipid Res 2008; 49(6): 1187-1194. 

  12. Zeisel SH, Wishnok JS, Blusztajn JK. Formation of methylamines from ingested choline and lecithin. J Pharmacol Exp Ther 1983;225(2): 320-324. 

  13. Le Kim D, Betzing H. Intestinal absorption of polyunsaturated phosphatidylcholine in the rat. Hoppe Seylers Z Physiol Chem 1976; 357(9): 1321-1331. 

  14. Bremer J, Greenberg D. Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine). Biochim Biophys Acta 1961; 46(2): 205-216. 

  15. Vance DE. Boehringer Mannheim Award lecture. Phosphatidylcholine metabolism: masochistic enzymology, metabolic regulation, and lipoprotein assembly. Biochem Cell Biol 1990; 68(10): 1151-1165. 

  16. Vance DE, Ridgway ND. The methylation of phosphatidylethanolamine. Prog Lipid Res 1988; 27(1): 61-79. 

  17. Yang EK, Blusztajn JK, Pomfret EA, Zeisel SH. Rat and human mammary tissue can synthesize choline moiety via the methylation of phosphatidylethanolamine. Biochem J 1988; 256(3): 821-828. 

  18. Bjornstad P, Bremer J. In vivo studies on pathways for the biosynthesis of lecithin in the rat. J Lipid Res 1966; 7(1): 38-45. 

  19. Weinhold PA, Sanders R. The oxidation of choline by liver slices and mitochondria during liver development in the rat. Life Sci 1973; 13(5): 621-629. 

  20. Finkelstein JD, Martin JJ, Harris BJ, Kyle WE. Regulation of the betaine content of rat liver. Arch Biochem Biophys 1982; 218(1): 169-173. 

  21. Wecker L. Neurochemical effects of choline supplementation. Can J Physiol Pharmacol 1986; 64(3): 329-333. 

  22. Exton JH. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta 1994; 1212(1): 26-42. 

  23. Yao ZM, Vance DE. Head group specificity in the requirement of phosphatidylcholine biosynthesis for very low density lipoprotein secretion from cultured hepatocytes. J Biol Chem 1989; 264(19): 11373-11380. 

  24. Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994; 269(5): 3125-3128. 

  25. Frenkel RA, Muguruma K, Johnston JM. The biochemical role of platelet-activating factor in reproduction. Prog Lipid Res 1996; 35(2): 155-168. 

  26. Burg MB. Molecular basis of osmotic regulation. Am J Physiol 1995; 268(6 Pt 2): F983-F996. 

  27. Eagle H. The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med 1955; 102(5): 595-600. 

  28. Zeisel SH, Albright CD, Shin OH, Mar MH, Salganik RI, da Costa KA. Choline deficiency selects for resistance to p53-independent apoptosis and causes tumorigenic transformation of rat hepatocytes. Carcinogenesis 1997; 18(4): 731-738. 

  29. Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL. Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 2006; 83(1): 5-10. 

  30. Zeisel SH, Da Costa KA, Franklin PD, Alexander EA, Lamont JT, Sheard NF, et al. Choline, an essential nutrient for humans. FASEB J 1991; 5(7): 2093-2098. 

  31. Shaw GM, Carmichael SL, Yang W, Selvin S, Schaffer DM. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am J Epidemiol 2004; 160(2): 102-109. 

  32. Rees WD, Wilson FA, Maloney CA. Sulfur amino acid metabolism in pregnancy: the impact of methionine in the maternal diet. J Nutr 2006; 136(6 Suppl): 1701S-1705S. 

  33. Buchman AL, Dubin MD, Moukarzel AA, Jenden DJ, Roch M, Rice KM, et al. Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology 1995; 22(5): 1399-1403. 

  34. Zeisel SH, Growdon JH, Wurtman RJ, Magil SG, Logue M. Normal plasma choline responses to ingested lecithin. Neurology 1980; 30(11): 1226-1229. 

  35. Savendahl L, Mar MH, Underwood LE, Zeisel SH. Prolonged fasting in humans results in diminished plasma choline concentrations but does not cause liver dysfunction. Am J Clin Nutr 1997; 66(3): 622-625. 

  36. Buchman AL, Dubin M, Jenden D, Moukarzel A, Roch MH, Rice K, et al. Lecithin increases plasma free choline and decreases hepatic steatosis in long-term total parenteral nutrition patients. Gastroenterology 1992; 102(4 Pt 1): 1363-1370. 

  37. Pomfret EA, daCosta KA, Zeisel SH. Effects of choline deficiency and methotrexate treatment upon rat liver. J Nutr Biochem 1990; 1(10): 533-541. 

  38. Jacob RA, Pianalto FS, Henning SM, Zhang JZ, Swendseid ME. In vivo methylation capacity is not impaired in healthy men during short-term dietary folate and methyl group restriction. J Nutr 1995; 125(6): 1495-1502. 

  39. Zeisel SH, Niculescu MD. Perinatal choline influences brain structure and function. Nutr Rev 2006; 64(4): 197-203. 

  40. da Costa KA, Gaffney CE, Fischer LM, Zeisel SH. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am J Clin Nutr 2005; 81(2): 440-444. 

  41. Varela-Moreiras G, Ragel C, Perez de Miguelsanz J. Choline deficiency and methotrexate treatment induces marked but reversible changes in hepatic folate concentrations, serum homocysteine and DNA methylation rates in rats. J Am Coll Nutr 1995; 14(5): 480-485. 

  42. Jacques PF, Bostom AG, Wilson PW, Rich S, Rosenberg IH, Selhub J. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am J Clin Nutr 2001; 73(3): 613-621. 

  43. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002; 288(16): 2015-2022. 

  44. Wu LL, Wu JT. Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clin Chim Acta 2002; 322(1-2): 21-28. 

  45. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 2002; 346(7): 476-483. 

  46. van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 2004; 350(20): 2033-2041. 

  47. Anonymous. Betaine for homocystinuria. Med Lett Drugs Ther 1997; 39(993): 12. 

  48. Atkinson W, Elmslie J, Lever M, Chambers ST, George PM. Dietary and supplementary betaine: acute effects on plasma betaine and homocysteine concentrations under standard and postmethionine load conditions in healthy male subjects. Am J Clin Nutr 2008; 87(3): 577-585. 

  49. Dalmeijer GW, Olthof MR, Verhoef P, Bots ML, van der Schouw YT. Prospective study on dietary intakes of folate, betaine, and choline and cardiovascular disease risk in women. Eur J Clin Nutr 2008; 62(3): 386-394. 

  50. Olthof MR, Brink EJ, Katan MB, Verhoef P. Choline supplemented as phosphatidylcholine decreases fasting and postmethionine-loading plasma homocysteine concentrations in healthy men. Am J Clin Nutr 2005; 82(1): 111-117. 

  51. da Costa KA, Badea M, Fischer LM, Zeisel SH. Elevated serum creatine phosphokinase in choline-deficient humans: mechanistic studies in C2C12 mouse myoblasts. Am J Clin Nutr 2004; 80(1): 163-170. 

  52. da Costa KA, Niculescu MD, Craciunescu CN, Fischer LM, Zeisel SH. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans. Am J Clin Nutr 2006; 84(1): 88-94. 

  53. Newberne PM, Rogers AE. Labile methyl groups and the promotion of cancer. Annu Rev Nutr 1986; 6(1): 407-432. 

  54. da Costa KA, Cochary EF, Blusztajn JK, Garner SC, Zeisel SH. Accumulation of 1,2-sn-diradylglycerol with increased membrane-associated protein kinase C may be the mechanism for spontaneous hepatocarcinogenesis in choline-deficient rats. J Biol Chem 1993; 268(3): 2100-2105. 

  55. Xu X, Gammon MD, Zeisel SH, Lee YL, Wetmur JG, Teitelbaum SL, et al. Choline metabolism and risk of breast cancer in a population-based study. FASEB J 2008; 22(6): 2045-2052. 

  56. Johansson M, Van Guelpen B, Vollset SE, Hultdin J, Bergh A, Key T, et al. One-carbon metabolism and prostate cancer risk: prospective investigation of seven circulating B vitamins and metabolites. Cancer Epidemiol Biomarkers Prev 2009; 18(5): 1538-1543. 

  57. Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer 2011; 11(12): 835-848. 

  58. Cheatham CL, Goldman BD, Fischer LM, da Costa KA, Reznick JS, Zeisel SH. Phosphatidylcholine supplementation in pregnant women consuming moderate-choline diets does not enhance infant cognitive function: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 2012; 96(6): 1465-1472. 

  59. Poly C, Massaro JM, Seshadri S, Wolf PA, Cho E, Krall E, et al. The relation of dietary choline to cognitive performance and white-matter hyperintensity in the Framingham Offspring Cohort. Am J Clin Nutr 2011; 94(6): 1584-1591. 

  60. Villamor E, Rifas-Shiman SL, Gillman MW, Oken E. Maternal intake of methyl-donor nutrients and child cognition at 3 years of age. Paediatr Perinat Epidemiol 2012; 26(4): 328-335. 

  61. Boeke CE, Gillman MW, Hughes MD, Rifas-Shiman SL, Villamor E, Oken E. Choline intake during pregnancy and child cognition at age 7 years. Am J Epidemiol 2013; 177(12): 1338-1347. 

  62. Detopoulou P, Panagiotakos DB, Antonopoulou S, Pitsavos C, Stefanadis C. Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study. Am J Clin Nutr 2008; 87(2): 424-430. 

  63. Cho E, Zeisel SH, Jacques P, Selhub J, Dougherty L, Colditz GA, et al. Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring Study. Am J Clin Nutr 2006; 83(4): 905-911. 

  64. Fargnoli JL, Fung TT, Olenczuk DM, Chamberland JP, Hu FB, Mantzoros CS. Adherence to healthy eating patterns is associated with higher circulating total and high-molecular-weight adiponectin and lower resistin concentrations in women from the Nurses' Health Study. Am J Clin Nutr 2008; 88(5): 1213-1224. 

  65. U.S. Department of health and Human Services, National Institutes of Health, National, Heart, Lung and Blood Institute. Statement from Elizabeth G. Nabel, M.D., Director, National Heart, Lung, and Blood Institute on new findings on the role of inflammation in prevention of coronary heart disease [Internet]. Bethesda (MD): National Institutes of Health; 2008 Nov 13 [cited 2022 Feb 1]. Available from: https://www.nih.gov/news-events/news-releases/statement-elizabeth-g-nabel-md-director-national-heart-lung-blood-institute-new-findings-role-inflammation-prevention-coronary-heart-disease. 

  66. Konstantinova SV, Tell GS, Vollset SE, Nygard O, Bleie O, Ueland PM. Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women. J Nutr 2008; 138(5): 914-920. 

  67. Gao X, Wang Y, Randell E, Pedram P, Yi Y, Gulliver W, et al. Higher dietary choline and betaine intakes are associated with better body composition in the adult population of Newfoundland, Canada. PLoS One 2016; 11(5): e0155403-e0155419. 

  68. Mueller DM, Allenspach M, Othman A, Saely CH, Muendlein A, Vonbank A, et al. Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis 2015; 243(2): 638-644. 

  69. Boyd WD, Graham-White J, Blackwood G, Glen I, McQueen J. Clinical effects of choline in Alzheimer senile dementia. Lancet 1977; 2(8040): 711. 

  70. Lawrence CM, Millac P, Stout GS, Ward JW. The use of choline chloride in ataxic disorders. J Neurol Neurosurg Psychiatry 1980; 43(5): 452-454. 

  71. Cho H, Na J, Jeong H, Chung Y. Choline contents of Korean common foods. Korean J Nutr 2008; 41(5): 428-438. 

  72. Probst Y, Guan V, Neale E. Development of a choline database to estimate Australian population intakes. Nutrients 2019; 11(4): E913-E925. 

  73. Chung YJ, Cho HJ, Na JS. Dietary choline intake of Korean young adults. Korean J Nutr 2004; 37(1): 61-67. 

  74. Jung WC, Kim YI, Shon HY, Kim S, Lee HJ. Choline contents survey in commercial milks. J Food Hyg Saf 2008; 23(4): 338-342. 

  75. Park JS, Ryu EC, Park JW, Kim HS. Analysis of choline in infant formula with ion chromatography in Korean domestic market. J Prev Vet Med 2016; 40(3): 109-114. 

  76. Jeong HO, Kim CI, Lee HS, Chung YJ. Estimation of dietary choline intake of Korean by gender, age and region. Korean J Nutr 2005; 38(4): 320-326. 

  77. Na JS, Cho HJ, Lim JH, Yun HI, Sok DE, Lee JW, et al. Plasma choline concentration of some Korean young adults and correlation with dietary choline intake. Korean J Nutr 2006; 39(2): 115-120. 

  78. Jeong H, Suh Y, Chung YJ. Choline and betaine concentrations in breast milk of Korean lactating women and the choline and betaine intakes of their infants. Korean J Nutr 2010; 43(6): 588-596. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로