$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

천수만 갯벌, 쏙(Upogebia major) 유입 및 정착 밀도에 따른 해수-퇴적물 환경과 서식지 특성 비교
Comparison of the Seawater-Sediment Environment and Habitat Properties with Variable Mud Shrimp Upogebia major Burrow Hole Density and Its Influence on Recruitment and Settlement in the Cheonsu Bay Tidal Flats 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.55 no.2, 2022년, pp.171 - 182  

전승렬 (국립수산과학원 서해수산연구소 갯벌연구센터) ,  옹기호 (국립수산과학원 서해수산연구소 갯벌연구센터) ,  구준호 (국립수산과학원 서해수산연구소 갯벌연구센터) ,  박종우 (국립수산과학원 서해수산연구소 갯벌연구센터) ,  김유철 (국립수산과학원 서해수산연구소 갯벌연구센터) ,  정희도 (국립수산과학원 서해수산연구소 갯벌연구센터) ,  조재권 (국립수산과학원 서해수산연구소 갯벌연구센터)

Abstract AI-Helper 아이콘AI-Helper

The habitat degradation caused by large-scale reclamation leads to devastating impacts, such as fine sediment and mud shrimp Upogebia major settlement on Manila clam Ruditapes philippinarum aquaculture in the eastern Cheonsu Bay tidal flats, Republic of Korea. Despite these impacts, there is a lack ...

주제어

표/그림 (11)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구에서는 쏙 유입 초기 및 공존 지역과 정착 지역의 갯벌환경에 대한 전반적인 현상을 파악하고자 쏙 서식 특성에 따라 해수-퇴적물 환경과 생물 분포 양상이 각기 다르게 나타나는 세 지역을 선정하였다. 또한, 퇴적물 내 공극수의 영양염 용출 플럭스 추정을 통해 쏙 서식 굴에 따른 수직적인 변동 경향을 파악하고, 생물 서식지의 특성이 어떠한 영향으로 변화하는지에 대해 알아보고자 하였다. 이에 따라, 쏙과 바지락의 지역적 환경 특성 차이를 비교, 분석하여 종간 경쟁구조의 전략적인 대응과 방안 수립을 위한 기초자료로 제공하고자 한다.
  • 본 연구에서는 쏙 유입 초기 및 공존 지역과 정착 지역의 갯벌환경에 대한 전반적인 현상을 파악하고자 쏙 서식 특성에 따라 해수-퇴적물 환경과 생물 분포 양상이 각기 다르게 나타나는 세 지역을 선정하였다. 또한, 퇴적물 내 공극수의 영양염 용출 플럭스 추정을 통해 쏙 서식 굴에 따른 수직적인 변동 경향을 파악하고, 생물 서식지의 특성이 어떠한 영향으로 변화하는지에 대해 알아보고자 하였다.
  • 또한, 퇴적물 내 공극수의 영양염 용출 플럭스 추정을 통해 쏙 서식 굴에 따른 수직적인 변동 경향을 파악하고, 생물 서식지의 특성이 어떠한 영향으로 변화하는지에 대해 알아보고자 하였다. 이에 따라, 쏙과 바지락의 지역적 환경 특성 차이를 비교, 분석하여 종간 경쟁구조의 전략적인 대응과 방안 수립을 위한 기초자료로 제공하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (50)

  1. Aller RC. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: Animal-sediment relations. McCall PL and Tevesz MJS, eds. Springer, Boston, MA, U.S.A., 53-104. https://doi.org/10.1007/978-1-4757-1317-6_2. 

  2. Berner RA. 1980. Early diagenesis: A theoretical approach. Princeton University Press, Princeton, NJ, U.S.A., 241. 

  3. Boudreau BP. 1997. Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments, Springer, Berlin, Germany, 414. 

  4. Choo HS. 2021. Spatiotemporal fluctuation of water temperature in Cheonsu Bay, Yellow Sea. Korean J Fish Aquat Sci 54, 90-100. https://doi.org/10.5657/KFAS.2021.0090. 

  5. D'Andrea AF and DeWitt TH. 2009. Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea; Thalassinidae) in Yaquina Bay, Oregon: Density-dependent effects on organic matter remineralization and nutrient cycling. Limnol Oceanogr 54, 1911-1932. https://doi.org/10.4319/lo.2009.54.6.1911. 

  6. Dame R. 2005. Oyster reefs as complex ecological systems. In: The comparative roles of suspension-feeders in ecosystems. Dame RF and Olenin S, eds. Springer, Dordrecht, Netherlands, 331-343. 

  7. Davey JT. 1994. The architecture of the burrow of Nereis diversicolor and its quantification in relation to sediment-water exchange. J Exp Mar Biol Ecol 179, 115-129. https://doi.org/10.1016/0022-0981(94)90020-5. 

  8. Dumbauld BR, Booth S, Cheney D, Suhrbier A and Beltran H. 2006. An integrated pest management program for burrowing shrimp control in oyster aquaculture. Aquaculture 261, 976-992. https://doi.org/10.1016/j.aquaculture.2006.08.030. 

  9. Dunn RJK, Welsh DT, Jordan MA, Teasdale PR and Lemckert CJ. 2009. Influence of natural amphipod (Victoriopisa australiensis) (Chilton, 1923) population densities on benthic metabolism, nutrient fluxes, denitrification and DNRA in sub-tropical estuarine sediment. Hydrobiologia 628, 95-109. https://doi.org/10.1007/s10750-009-9748-2. 

  10. Feldman KL, Armstrong DA, Dumbauld BR, DeWitt TH and Doty DC. 2000. Oysters, crabs, and burrowing shrimp: Review of an environmental conflict over aquatic resources and pesticide use in Washington State's (USA) coastal estuaries. Estuaries 23, 141-176. https://doi.org/10.2307/1352824. 

  11. Folk RL. 1968. A review of grain size parameters. Sedimentology 6, 73-93. https://doi.org/10.1111/j.1365-3091.1966.tb01572.x. 

  12. Hannides AK, Dunn SM and Aller RC. 2005. Diffusion of organic and inorganic solutes through macrofaunal mucussecretions and tube linings in marine sediments. J Mar Res 63, 957-981. https://doi.org/10.1357/002224005774464193. 

  13. Iversen N and Jorgensen BB. 1993. Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity. Geochim Cosmochim Acta 57, 571-578. https://doi.org/10.1016/0016-7037(93)90368-7. 

  14. Jeon SR, Hong SJ, Choi Y, Cho YS and Song JH. 2019. Comparison of sedimentary environmental characteristic of tidal flats on the west coast of Korea depending on the habitation of mud shrimp Upogebia major. Korean J Fish Aquat Sci 52, 656-665. https://doi.org/10.5657/KFAS.2019.0656. 

  15. Jones CG, Lawton JH and Shachak M. 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78, 1946-1957. https://doi.org/10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2. 

  16. Jordan MA, Welsh DT, Dunn RJ and Teasdale PR. 2009. Influence of Trypaea australiensis population density on benthic metabolism and nitrogen dynamics in sandy estuarine sediment: a mesocosm simulation. J Sea Res 61, 144-152. https://doi.org/10.1016/j.seares.2008.11.003. 

  17. Jung KY, Ro YJ and Kim BJ. 2013. Tidal and sub-tidal current characteristics in the central part of Chunsu Bay, Yellow Sea, Korea during the summer season. J Korean Soc Oceanogr 18, 53-64. https://doi.org/10.7850/jkso.2013.18.2.53. 

  18. Jung KY, Ro YJ, Choi YH and Kim BJ. 2015. Hypoxia in a transient estuary caused by summer lake-water discharge from artificial dykes into Chunsu Bay, Korea. Mar Pollut Bull 95, 47-62. https://doi.org/10.1016/j.marpolbul.2015.04.043. 

  19. Jung RH, Seo IS, Lee WC, Kim HC, Park SR, Kim JB, Oh CW and Choi BM. 2014. Community structure and health assessment of macrobenthic assemblages at spring and summer in Cheonsu Bay, west coast of Korea. J Korean Soc Oceanogr 19, 272-286. https://doi.org/10.7850/jkso.2014.19.4.272. 

  20. Kim DS, Lim DI, Jeon SK and Jung HS. 2005. Chemical characteristics and eutrophication in Cheonsu Bay, west coast of Korea. Ocean Polar Res 27, 45-58. https://doi.org/10.4217/OPR.2005.27.1.045. 

  21. Kim TI, Choi BH and Lee SW. 2006. Hydrodynamics and sedimentation induced by large-scale coastal developments in the Keum River Estuary, Korea. Estuar Coast Shelf Sci 68, 515-528. https://doi.org/10.1016/j.ecss.2006.03.003. 

  22. KMA (Korea Meteorological Administration). 2022. Automatic weather system. Retrieved from https://www.weather.go.kr/plus/land/current/aws_table_popup.jsp on Apr 5, 2022. 

  23. Koo BJ. 2018. Diurnal variations of nutrients in burrows of the mud shrimp Laomedia astacina (Crustacea, Laomediidae). J Korean Soc Mar Environ Energy 21, 281-292. https://doi.org/10.7846/JKOSMEE.2018.21.4.281. 

  24. KORDI (Korea Ocean Research and Development Institute). 1994. A study of the marine ecosystem on the effects of coastal zone development. BSPN 00239-737-3, 306. 

  25. Kristensen, E. 1984. Effect of natural concentrations on nutrient exchange between a polychaete burrow in estuarine sedimentand the overlying water. J Exp Mar Biol Ecol 75, 171-190. https://doi.org/10.1016/0022-0981(84)90179-5. 

  26. Lee DK, Kim KH and Lee JS. 2016. Hypoxia and characteristics of nutrient distribution at the bottom water of Cheonsu Bay due to the discharge of eutrophicated artificial lake water. J Korean Soc Mar Environ Saf 22, 854-862. https://doi.org/10.7837/kosomes.2016.22.7.854. 

  27. Lee JH and Park HS. 1998. Community structures of macrobenthos in Chonsu Bay, Korea. J Oceanol Soc Korea 33, 18-27. 

  28. Lee JK, Park C, Lee DB and Lee SW. 2012. Variations in plankton assemblage in a semi-closed Chunsu Bay, Korea. J Korean Soc Oceanogr 17, 95-111. https://doi.org/10.7850/jkso.2012.17.2.095. 

  29. Lee JY, Choi MS and Song YH. 2019a. Effect of freshwater discharge on the seawater quality (Nutrients, Organic Materials and Trace Metals) in Cheonsu Bay. J Korean Soc Oceanogr 24, 519-534. https://doi.org/10.7850/jkso.2019.24.4.519. 

  30. Lee SM, Chang SJ and Heo S. 2019b. Changes in phytoplankton community structure by freshwater input in the Cheonsu Bay, Korea. J Environ Sci Int 28, 1005-1017. https://doi.org/10.5322/JESI.2019.28.11.1005. 

  31. Lerman A. 1979. Geochemical processes water and sediment environment. Wiley Inc, New York, NY, U.S.A., 481. 

  32. Lohrer AM, Thrush SF and Gibbs MM. 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431, 1092-1095. https://doi.org/10.1038/nature03042. 

  33. NIFS (National Institute of Fisheries Science). 2012. 2/2 Technical report of national institute of fisheries science. NIFS, Busan, Korea, 1295. 

  34. NIFS (National Institute of Fisheries Science). 2016. 1/2 Technical report of national institute of fisheries science. NIFS, Busan, Korea, 725. 

  35. McDuff RE and Ellis RA. 1979. Determining diffusion coefficients in marine sediments: A laboratory study of the validity of resistivity techniques. Am J Sci 279, 666-675. https://doi.org/10.2475/ajs.279.6.666. 

  36. MOF (Ministry of Oceans and Fisheries). 2013. Marine environment standard methods. MOF, Sejong, Korea, 1-525. 

  37. Papaspyrou S, Gregersen T, Cox RP, Thessalou-Legaki M and Kristensen E. 2005. Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea). Aquat Microb Ecol 38, 181-190. https://doi.org/10.3354/ame038181. 

  38. Park SY, Park GS, Kim HC, Kim PJ, Kim JP, Park JH and Kin SY. 2006. Long-term changes and variational characteristics of water quality in the Cheonsu Bay of Yellow Sea, Korea. J Environ Sci Int 15, 447-459. https://doi.org/10.5322/JES.2006.15.5.447. 

  39. Park SY, Heo S, Yu J, Hwang UK, Park JS, Lee SM and Kim CM. 2013. Temporal and spatial variations of water quality in the Cheonsu Bay of Yellow Sea, Korea. J Korean Soc Mar Environ Saf 19, 439-458. https://doi.org/10.7837/kosomes.2013.19.5.439. 

  40. Reise K, Herre E and Sturm M. 1989. Historical changes in the benthos of the Wadden Sea around the island of Sylt in the North Sea. Helgol Meeresunters 43, 417-433. https://doi.org/10.1007/BF02365901. 

  41. Ryu SO and Chang JH. 2005. Characteristics of tidal beach and shoreline changes in Chunsu Bay, West Coast of Korea. J Korean Earth Sci Soc 26, 584-596. 

  42. Seo JH and Koo BJ. 2019. Spring-neap variation on sediment reworking with organic matter contents by a polychaete, Perinereis aibuhitensis, in the intertidal sediments of the Gomso Bay, Korea. Mar Biol 166, 124. https://doi.org/10.1007/s00227-019-3572-7. 

  43. So JK, Jung KT and Chae JW. 1998. Numerical modeling of changes in tides and tidal currents caused by embankment at Chonsu Bay. J Ocean Eng Technol 10, 151-164. 

  44. Solan M, Cardinale BJ, Downing AL, Engelhardt KAM, Ruesink JL and Srivastava DS. 2004. Extinction and ecosystem function in the marine benthos. Science 306, 1177-1180. https://doi.org/10.1126/science.1103960. 

  45. Song YH, Choi MS and Ahn YW. 2011. Trace metals in Chunsu Bay sediments. J Korean Soc Oceanogr 16, 169-179. https://doi.org/10.7850/jkso.2011.16.4.169. 

  46. Swinbanks DD and Murray JW. 1981. Biosedimentological zonation of Boundary Bay tidal flats, Fraser River Delta, British Columbia. Sedimentology 28, 201-237. https://doi.org/10.1111/j.1365-3091.1981.tb01677.x. 

  47. Tamaki A, Nakaoka A, Maekawa H and Yamada F. 2008. Spatial partitioning between species of the phytoplankton-feeding guild on an estuarine intertidal sand flat and its implication on habitat carrying capacity. Estuar Coast Shelf Sci 78, 727-738. https://doi.org/10.1016/j.ecss.2008.02.009. 

  48. Waldbusser, GG and Marinelli RL. 2006. Macrofaunal modification of porewater advection: role of species function, species interaction, and kinetics. Mar Ecol Prog Ser 311, 217-231. https://doi.org/10.3354/meps311217. 

  49. Welsh DT. 2003. It's a dirty job but someone has to do it: The role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chem Ecol 19, 321-342. https://doi.org/10.1080/0275754031000155474. 

  50. Woo HJ, Choi JU, Ryu JH, Choi SH and Kim SR. 2005. Sedimentary environments in the Hwangdo tidal flat, Cheonsu Bay. J Korean Wetlands Soc 7, 53-67. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로