$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] PdO 나노입자를 이용한 니트라민 폭발물 분해반응에 대한 1H NMR 반응속도연구
1H NMR Kinetic Studies for Degradation of Nitramine Explosives Using PdO Nanoparticle 원문보기

공업화학 = Applied chemistry for engineering, v.33 no.3, 2022년, pp.302 - 308  

Kye, Young-Sik (육군사관학교 물리화학과) ,  Kumbier, Mathew (네브래스카대학교 링컨캠퍼스 화학과) ,  Kim, Dongwook (육군사관학교 물리화학과) ,  Harbison, Gerard S. (네브래스카대학교 링컨캠퍼스 화학과) ,  Langell, Marjorie A. (네브래스카대학교 링컨캠퍼스 화학과)

초록
AI-Helper 아이콘AI-Helper

사격장 피탄지에 잔류되는 고폭화약으로 인한 환경오염 문제를 해결하기 위해 표면적이 큰 나노입자를 사용한 분해반응을 연구하였다. 수질오염을 가상하여 물에 용해시킨 research department explosive (RDX)와 high melting explosive(HMX) 니트라민 폭발물에 PdO를 첨가하여 313 K에서 분해반응시켰다. 폭발물의 분해반응속도를 측정하기 위해 반응 초기부터 종료시까지 시료 손실없이 반응속도를 측정할 수 있고 스펙트럼을 통하여 반응의 진행 정도를 관찰 가능한 1H NMR을 사용하였다. NMR 피크의 chemical shift 및 peak intensity 분석으로 유사 1차 분해반응이 일어남을 확인하였으며, 측정된 RDX와 HMX의 분해반응 속도상수는 각각 2.10 × 10-2과 6.35 × 10-4 h-1이었다. 본 연구로부터 산화금속 PdO 나노입자는 니트라민 폭발물 분해반응연구에 적용 가능함을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

The PdO nanoparticle with large surface area was selected to solve the environmental pollution problem at fire range caused by high energy explosives research department explosive (RDX) and high melting explosive (HMX). By simulating water pollution, RDX and HMX nitramine explosives were dissolved i...

주제어

표/그림 (7)

참고문헌 (43)

  1. W. E. Bachmann and J. C. Sheehan, A new method of preparing the high explosive RDX, J. Am. Chem. Soc., 71, 1842-1845 (1949). 

  2. Z. Matys D. Powala, A. Orzechowski, and A. Maranda, Methods for obtaining octogen (HMX), CHEMIK, 66, 58-63 (2012). 

  3. S. H, Kim, Effect of particle size on thermal property of RDX and HMX, Appl. Chem. Eng., 23, 352-357 (2012). 

  4. V. K. Balakrishnan, F. Monteil-Rivera, M. A. Gautier, and J. Hawari, Sorption and stability of the polycyclic nitramine explosive CL-20 in soil, J. Environ. Qual., 33, 1362-1368 (2004). 

  5. R. E. Card, Jr. and R. Autenrieth, Treatment of HMX and RDX contamination, 9-10, ANRCP-1998-2, Amarillo National Resource Center for Plutonium, Amarillo, Texas (1998). 

  6. D. Kalderis, A. L. Juhasz, R. Boopathy, and S. Comfort, Soils contaminated with explosives: Environmental fate and evaluation of state-of the-art remediation processes, Pure Appl. Chem., 83, 1407-1484 (2011). 

  7. T. Urbanski, Chemistry and Technology of Explosives, Vol. 3, 77-78, Pergamon Press, Oxford (1967). 

  8. R. M. X. Hesselmann and M. K. Stenstrom, Treatment concept for RDX-containing waste waters using activated carbon with offline solvent biological regeneration, School of Engineering and Applied Science Report Eng. 94-23, 2-5, University of California, Los Angeles (1994). 

  9. E. S. Fiala, Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethylhydrazine and azoxymethane, Cancer, 40, 2436-2445 (1977). 

  10. W. L. McLellan, W. R. Hartley, and M. E. Brower, Health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), PB90-273533, US Army Medical Research and Development Command, Fort Detrick, Maryland (1988). 

  11. W. L. McLellan, W. R. Hartley, and M. E. Brower, Health advisory for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), PB90-273525, US Army Medical Research and Development Command, Fort Detrick, Maryland (1988). 

  12. E. Etnier, Water quality criteria for hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX), Regul. Toxicol. Pharmacol., 9, 147-157 (1989). 

  13. E. L. Etnier and W. R. Hartley, Comparison of water quality criterion and lifetime health advisory for hexahydro-1,3,5-trinitro-1,3,5- triazine(RDX), Regul. Toxicol. Pharmacol., 11, 118-122 (1990). 

  14. J. Aalto, Management of the groundwater contaminated by military explosives, Master of Science Thesis, Tampere University of Technology, Tampere, Finland (2016). 

  15. P. Mahbub and P. N. Nesterenko, Application of photo degradation for remediation of cyclic nitramine and nitroaromatic explosives, RSC Adv., 6, 77603 (2016). 

  16. V. K. Balakrishnan, A. Halasz, and J. Hawari, Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: New insights into degradation pathways obtained by the observation of novel intermediates, Environ. Sci. Technol., 37, 1838-1843 (2003). 

  17. H. M. Heilmann, U. Wiesmann, and M. K. Stenstrom, Kinetics of the alkaline hydrolysis of high explosives RDX and HMX in aqueous solution and adsorbed to activated carbon, Environ. Sci. Technol., 30, 1485-1492 (1996). 

  18. M. Vidali, Bioremediation. An overview, Pure Appl. Chem., 73, 1163-1172 (2001). 

  19. A. Bernstein and Z. Ronen, Biodegradation of the Explosives TNT, RDX and HMX. In: S. Singh, eds. Microbial Degradation of Xenobiotics, 135-176, Environmental Science and Engineering, Springer, Berlin, Heidelberg (2012). 

  20. N. G. McCormick, J. H. Cornell, and H. S. Kaplan, Biodegradation of hexadro-1,3,5-trinitro-1,3,5-triazine, Appl. Environ. Microbiol., 42, 817-823 (1981). 

  21. J. Hawari, A. Halasz, T. Sheremata, S. Beaudet, C. Groom, L. Paquet, C. Rhofir, G. Ampleman, and S. Thiboutot, Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl. Environ. Microbiol., 66, 2652-2657 (2000). 

  22. J. Hawari, A. Halasz, C. Groom, S. Deschamps, L. Paquet, C. Beaulieu, and A. Corriveau, Photodegradation of RDX in aqueous solution: a mechanistic probe for biodegradation with Rhodococcus sp., Environ. Sci. Technol., 36, 5117-5123 (2002). 

  23. J. Hawari, A. Halasz, S. Beaudet, L. Paquet, G. Ampleman, and S. Thiboutot, Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge, Environ. Sci. Technol., 35, 70-75 (2001). 

  24. D. Fournier, A. Halasz, J. Spain, P. Fiurasek, and J. Hawari, Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22, Appl. Environ. Microbiol., 68, 166-172 (2002). 

  25. R. G. Jackson, E. L. Rylott, D. Fournier, J. Hawari, and N. C. Bruce, Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B, Proc. Natl. Acad. Sci., 104, 16822-16827 (2007). 

  26. A. Halasz, D. Manno, S. E. Strand, N. C. Bruce, and J. Hawari, Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: New insights into the degradation pathway, Environ. Sci. Technol., 44, 9330-9336 (2010). 

  27. M. E. Fuller, N. Perreault, and J. Hawari, Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Lett. Appl. Microbiol., 51, 313-318 (2010). 

  28. K. Ayoub, E. D. van Hullebusch, M. Cassir, and A. Bermond, Application of advanced oxidation processes for TNT removal: A review, J. Hazard. Mater., 178, 10-28 (2010). 

  29. M. C. Lapointe, R. Martel, and D. P. Cassidy, RDX degradation by chemical oxidation using calcium peroxide in bench scale sludge systems, Environ. Res., 188, 109836 (2020). 

  30. M. J. Liou., M. C. Lu, and J. N. Chen, Oxidation of explosives by Fenton and photo-Fenton processes, Water Res., 37, 3172-3179 (2003). 

  31. K. B. Gregory, P. Larese-Casanova, G. F. Parkin, and M. M. Scherer, Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Fe II bound to magnetite, Environ. Sci. Technol., 38, 1408-1414 (2004). 

  32. F. Monteil-Rivera, L. Paquet, A. Halasz, M. T. Montgomery, and J. Hawari, Reduction of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by zerovalent iron: product distribution, Environ. Sci. Technol., 39, 9725-9731 (2005). 

  33. M. Muniz-Miranda, A. Zoppi, F. Muniz-Miranda, and N. Calisi, Palladium oxide nanoparticles: preparation, characterization and catalytic activity evaluation, Coatings, 10, 207 (2020). 

  34. H. H. Lee, D. H. Jang, and S. C. Hong, A study on the simultaneous oxidation of CH 4 and CO over Pd/TiO 2 catalyst, Appl. Chem. Eng., 23, 253-258 (2012). 

  35. S. H. Moon, W. J. Lee, and K. Y. Lee, Research trends in chemical analysis based explosive detection techniques, Appl. Chem. Eng., 33, 1-10 (2022). 

  36. B. Didillon, E. Merlen, T. Pages, and D. Uzio, From colloidal particles to supported catalysts: a comprehensive study of palladium oxide hydrosols deposited on alumina, Stud. Surf. Sci. Catal., 118, 41-54 (1998). 

  37. S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309-319 (1938). 

  38. T. L. Hwang and A. J. Shaka, Water suppression using excitation sculpting with gradients, J. Magn. Reson.; Series A, 112, 275-279 (1995). 

  39. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, and K. I. Goldberg, NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist, Organometallics, 29, 2176-2179 (2010). 

  40. M. Szala and L. Szymanczyk, Analysis of common explosives in different solvents by nuclear magnetic resonance spectroscopy, Cent. Eur. J. Energ. Mater., 11, 129-142 (2014). 

  41. A. Preiss, K. Levsen, E. Humpfer, and M. Spraul, Application of high-field proton nuclear magnetic resonance ( 1 H-NMR) spectroscopy for the analysis of explosives and related compounds in groundwater samples-a comparison with the high-performance liquid chromatography (HPLC) method, Fresenius J. Anal. Chem., 356, 445-451 (1996). 

  42. M. Godejohann, L. Heintz, C. Daolio, J. Berset, and D. Muff, Comprehensive non-targeted analysis of contaminated groundwater of a former ammunition destruction site using 1 H-NMR and HPLC-SPE-NMR/TOF-MS, Environ. Sci. Technol., 43, 7055-7061 (2009). 

  43. I. Berregi, G. del Campo, R. Caracena, and J. I. Miranda, Quantitative determination of formic acid in apple juices by 1 H NMR spectrometry, Talanta, 72, 1049-1053 (2007). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로