$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 대기의 강이 한반도 지역별 강수에 미치는 영향
Influence of Atmospheric Rivers on Regional Precipitation in South Korea 원문보기

대기 = Atmosphere, v.32 no.2, 2022년, pp.135 - 148  

권예은 (서울대학교 자연과학대학 지구환경과학부) ,  박찬일 (서울대학교 자연과학대학 지구환경과학부) ,  백승윤 (서울대학교 자연과학대학 지구환경과학부) ,  손석우 (서울대학교 자연과학대학 지구환경과학부) ,  김진원 (국립기상과학원 기후변화예측연구팀) ,  차은정 (국립기상과학원 예보연구부)

Abstract AI-Helper 아이콘AI-Helper

This study investigates the influence of atmospheric river (AR) on precipitation over South Korea with a focus on regional characteristics. The 42-year-long catalog of ARs, which is obtained by applying the automatic AR detection algorithm to ERA5 reanalysis data and the insitu precipitation data re...

주제어

표/그림 (10)

참고문헌 (43)

  1. AMS, 2017: Atmospheric river. Glossary of Meteorology, American Meteorological Society [Available online at https://glossary.ametsoc.org/wiki/Atmospheric_river]. 

  2. Bao, J.-W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 1063-1080, doi:10.1175/mwr3123.1. 

  3. Brands, S., J. M. Gutierrez, and D. San-Martin, 2017: Twentieth-century atmospheric river activity along the west coasts of Europe and North America: algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns. Climate Dyn., 48, 2771-2795, doi:10.1007/s00382-016-3095-6. 

  4. Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445-478, doi:10.3390/w3020445. 

  5. Gimeno, L., and Coauthors, 2016: Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annu. Rev. Environ. Resour., 41, 117-141, doi:10.1146/annurev-environ-110615-085558. 

  6. Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12514-12535, doi:10.1002/2015JD024257. 

  7. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc., 146, 1999-2049, doi:10.1002/qj.3803. 

  8. Hu, H., F. Dominguez, Z. Wang, D. A. Lavers, G. Zhang, and F. M. Ralph, 2017: Linking atmospheric river hydrological impacts on the U.S. West Coast to Rossby wave breaking. J. Climate, 30, 3381-3399, doi:10.1175/jcli-d-16-0386.1. 

  9. Junker, N. W., R. H. Grumm, R. Hart, L. F. Bosart, K. M. Bell, and F. J. Pereira, 2008: Use of normalized anomaly fields to anticipate extreme rainfall in the mountains of northern California. Wea. Forecasting, 23, 336-356, doi:10.1175/2007WAF2007013.1. 

  10. Kamae, Y., W. Mei, S.-P. Xie, M. Naoi, and H. Ueda, 2017a: Atmospheric rivers over the Northwestern Pacific: Climatology and interannual variability. J. Climate, 30, 5605-5619, doi:10.1175/JCLI-D-16-0875.1. 

  11. Kamae, Y., W. Mei, and S.-P. Xie, 2017b: Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. J. Meteor. Soc. Japan Ser. II, 95, 411-431, doi:10.2151/jmsj.2017-027. 

  12. Kim, J., D. E. Waliser, P. J. Neiman, B. Guan, J.-M. Ryoo, and G. A. Wick, 2013: Effects of atmospheric river landfalls on the cold season precipitation in California. Climate Dyn., 40, 465-474, doi:10.1017/s00382-012-1322-3. 

  13. Kim, J., and Coauthors, 2018: Winter precipitation characteristics in western US related to atmospheric river landfalls: observations and model evaluations. Climate Dyn., 50, 231-248, doi:10.1017/ s00382-017-3601-5. 

  14. Kim, J., H. Moon, B. Guan, D. E. Waliser, J. Choi, T.-Y. Gu, and Y.-H. Byun, 2021: Precipitation characteristics related to atmospheric rivers in East Asia. Int. J. Climatol., 41, E2244-E2257, doi:10.1002/joc.6843. 

  15. Konrad, C. P., and M. D. Dettinger, 2017: Flood runoff in relation to water vapor transport by atmospheric rivers over the Western United States, 1949~2015. Geophys. Res. Lett., 44, 11456-11462, doi:10.1002/2017GL075399. 

  16. Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 3259-3264, doi:10.1002/grl.50636. 

  17. Lavers, D. A., and G. Villarini, 2015: The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol., 522, 382-390, doi:10.1016/j.jhydrol.2014.12.010. 

  18. Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783. 

  19. Lee, S., 1999: The distribution of precipitation in Cheju Island. J. Korean Geogr. Soc., 34, 123-136 (in Korean with English abstract). 

  20. Lee, S., I. Heo, K. Lee, and W.-T. Kwon, 2005: Classification of local climatic regions in Korea. J. Korean Meteor. Soc., 41, 983-995 (in Korean with English abstract). 

  21. Moon, H., J. Kim, B. Guan, D. E. Waliser, J. Choi, T.-Y. Goo, Y. Kim, and Y.-H. Byun, 2019: The effects of atmospheric river landfalls on precipitation and temperature in Korea. Atmosphere, 29, 343-353, doi:10.14191/ATMOS.2019.29.4.343 (in Korean with English abstract). 

  22. Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 4885-4903, doi:10.1175/JCLI-D-15-0655.1. 

  23. Nash, D., D. E. Waliser, B. Guan, H. Ye, and F. M. Ralph, 2018: The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos., 123, 6804-6821, doi:10.1029/2017JD028130. 

  24. Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California's coastal mountains: observations during CALJET. Mon. Wea. Rev., 130, 1468-1492, doi:10.1175/1520-0493(2002)130 2.0.CO;2. 

  25. Park, C., S.-W. Son, and H. Kim, 2021a: Distinct features of atmospheric rivers in the early versus late east Asian summer monsoon and their impacts on monsoon rainfall. J. Geophys. Res. Atmos., 126, e2020-JD033537, doi:10.1029/2020JD033537. 

  26. Park, C., and Coauthors, 2021b: Record-breaking summer rainfall in South Korea in 2020: Synoptic characteristics and the role of large-scale circulations. Mon. Wea. Rev., 149, 3085-3100, doi:10.1175/MWR-D-21-0051.1. 

  27. Park, C., S.-W. Son, J. Kim, E.-C. Chang, J.-H. Kim, E. Jo, D.-H. Cha, and S. Jeong, 2021c: Diverse synoptic weather patterns of warm-season heavy rainfall events in South Korea. Mon. Wea. Rev., 149, 3875-3893, doi:10.1175/MWR-D-20-0388.1. 

  28. Paltan, H., D. Waliser, W. H. Lim, B. Guan, D. Yamazaki, R. Pant, and S. Dadson, 2017: Global floods and water availability driven by atmospheric rivers. Geophys. Res. Lett., 44, 10387-10395, doi:10.1002/2017GL074882. 

  29. Payne, A. E., and G. Magnusdottir, 2014: Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. J. Climate, 27, 7133-7150, doi:10.1175/JCLI-D-14-00034.1. 

  30. Payne, A. E., and Coauthors, 2020: Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ., 1, 143-157, doi:10.1038/s43017-020-0030-5. 

  31. Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme west coast precipitation associated with atmospheric Rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783-790, doi:10.1175/BAMS-D-11-00188.1. 

  32. Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 1721-1745, doi:10.1175/1520-0493(2004)132 2.0.CO;2. 

  33. Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California's Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689. 

  34. Ralph, F. M., T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California. J. Hydrometeor., 14, 443-459, doi:10.1175/JHM-D-12-076.1. 

  35. Ralph, F. M., S. F. Iacobellis, P. J. Neiman, J. M. Cordeira, J. R. Spackman, D. E. Waliser, G. A. Wick, A. B. White, and C. Fairall, 2017: Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J. Hydrometeor., 18, 2577-2596, doi:10.1175/JHM-D-17-0036.1. 

  36. Ralph, F. M., M. D. Dettinger, M. M. Cairns, T. J. Galarneau, and J. Eylander, 2018: Defining "atmospheric river": How the glossary of meteorology helped resolve a debate. Bull. Amer. Meteor. Soc., 99, 837-839, doi:10.1175/BAMS-D-17-0157.1. 

  37. Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905-921, doi:10.1175/MWR-D13-00168.1. 

  38. Rutz, J. J., and Coauthors, 2019: The atmospheric river tracking method intercomparison project (ARTMIP): Quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos., 124, 13777-13802, doi:10.1029/2019JD030936. 

  39. Ryu, Y., and Coauthors, 2021: A multi-inventory ensemble analysis of the effects of atmospheric rivers on precipitation and streamflow in the Namgang-dam basin in Korea. Water Resour. Res., 57, e2021WR030058, doi:10.1029/2021WR030058. 

  40. Schultz, D. M., and G. Vaughan, 2011: Occluded fronts and the occlusion process: A fresh look at conventional wisdom. Bull. Amer. Meteor. Soc., 92, 443-466, doi:10.1175/2010BAMS3057.1. 

  41. Viale, M., R. Valenzuela, R. D. Garreaud, and F. M. Ralph, 2018: Impacts of atmospheric rivers on precipitation in southern South America. J. Hydrometeor., 19, 1671-1687, doi:10.1175/JHM-D-18-0006.1. 

  42. Waliser, D., and B. Guan, 2017: Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci., 10, 179-183, doi:10.1038/NGEO2894. 

  43. Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725-735, doi:10.1175/1520-0493(1998)126 2.0.CO;2. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로