$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수지상 폴리(알릴렌 이써 설폰)에 도입된 지방족 알킬사슬 연결자길이에 따른 음이온교환막의 특성 연구
A Study on the Characteristics of Anion Exchange Membrane According to Aliphatic Alkyl Chain Spacer Length Introduced into Branched Poly (Arylene Ether Sulfone) 원문보기

한국수소 및 신에너지학회 논문집 = Transactions of the Korean Hydrogen and New Energy Society, v.33 no.3, 2022년, pp.209 - 218  

김현진 (전북대학교 대학원 에너지저장.변환공학과(BK21 FOUR), 수소.연료전지연구센터) ,  유동진 (전북대학교 대학원 에너지저장.변환공학과(BK21 FOUR), 수소.연료전지연구센터)

Abstract AI-Helper 아이콘AI-Helper

Recently, research on the development of anion exchange membranes (AEMs) has received considerable attention from the scientific community around the world. Here, we fabricated a series of AEMs with branched structures with different alkyl spacers and conducted comparative evaluations. The introduct...

주제어

참고문헌 (43)

  1. H. Wang, J. Zhang, X. Ning, M. Tian, Y. Long, and S. Ramakrishna, "Recent advances in designing and tailoring nanofiber composite electrolyte membranes for high-performance proton exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 46, No. 49, 2021, pp. 25225-25251, doi: https://doi.org/10.1016/j.ijhydene.2021.05.048. 

  2. H. Y. Son, J. S. Han, and S. S. Yu, "Development of a multi-physics model of polymer electrolyte membrane muel cell using aspen custom modeler", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 6, 2021, pp. 489-496, doi: https://doi.org/10.7316/KHNES.2021.32.6.489. 

  3. A. R. Kim, M. Vinothkannan, S. Ramakrishnan, B. H. Park, M. K. Han, and D. J. Yoo, "Enhanced electrochemical performance and long-term durability of composite membranes through a binary interface with sulfonated unzipped graphite nanofibers for polymer electrolyte fuel cells operating under low relative humidity", Appl. Surf. Sci., Vol. 593, 2022, pp. 153407, doi: https://doi.org/10.1016/j.apsusc.2022. 153407. 

  4. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Graphene-mediated organicinorganic composites with improved hydroxide conductivity and outstanding alkaline stability for anion exchange membranes", Composities Part B, Vol. 164, 2019, pp. 324-332, doi: https://doi.org/10.1016/j.compositesb.2018.11.084. 

  5. G. Gupta, S. Sharma, and P. M. Mendes "Nafion-stabilised bimetallic Pt-Cr nanoparticles as electrocatalysts for proton exchange membrane fuel cells (PEMFCs)", RCS Advances, Vol. 6, No. 86, 2016, pp. 82635-82643, doi: https://doi.org/10.1039/C6RA16025E. 

  6. B. H. Oh, A. R. Kim, and D. J. Yoo, "Profile of extended chemical stability and mechanical integrity and high hydroxide ion conductivity of poly(ether imide) based membranes for anion exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 44, No. 8, 2019, pp. 4281-4292, doi: https://doi.org/10.1016/j.ijhydene.2018.12.177. 

  7. S. K. Ryu, M. Vinothkannan, A. R. Kim, and D. J. Yoo, "Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120-160 ℃'', Energy, Vol. 238, 2022, pp. 121791, doi: https://doi.org/10.1016/j.energy.2021.121791. 

  8. W. E. Mustain, M. Chatenet, M. Page, and Y. S. Kim, "Durability challenges of anion exchange membrane fuel cells", Energy & Environmental Science, Vol. 13, No. 9, 2020, pp. 2805-2838, doi: https://doi.org/10.1039/D0EE01133A. 

  9. D. R. Dekel, "Review of cell performance in anion exchange membrane fuel cells", J. Power Sources, Vol. 375, 2018, pp. 158-169, doi: https://doi.org/10.1016/j.jpowsour.2017.07.117. 

  10. P. G. Santori, F. D. Speck, S. Cherevko, H. A. Firousjaie, X. Peng, W. E. Mustain, and F. Jaouen, "High performance FeNC and Mn-oxide/FeNC layers for AEMFC cathodes", J. Electrochem. Soc., Vol. 167, No. 13, 2020, pp. 134505, doi: https://doi.org/10.1149/1945-7111/ABB7E0. 

  11. H. A. Firouzjaie and W. E. Mustain, "Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells", ACS Catal., Vol. 10, No. 1, 2020, pp. 225-234, doi: https://doi.org/10.1021/acscatal.9b03892. 

  12. G. Merle, M. Wessling, and K. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: a review", Journal of Membrane Science, Vol. 377, No. 1-2, 2011, pp. 1-35, doi: https://doi.org/10.1016/j.memsci.2011.04.043. 

  13. F. Xu, Y. Su, and B. Lin, "Progress of alkaline anion exchange membranes for fuel cells: the effects of micro-phase separation", Frontiers in Materials, Vol. 7, No. 4, 2020, pp. 1-7, doi: https://doi.org/10.3389/fmats.2020.00004. 

  14. Y. Luo, Y. Wu, B. Li, T. Mo, Y. Li, S. P. Feng, J. Qu, and P. K. Chu, "Development and application of fuel cells in the automobile industry", Journal of Energy Storage, Vol. 42, 2021, pp. 103124, doi: https://doi.org/10.1016/j.est.2021.103124. 

  15. J. Sang, L. Yang, Z. Li, F. Wang, Z. Wang, and H. Zhu, "Comb-shaped SEBS-based anion exchange membranes with obvious microphase separation morphology", Eelctrochimica Acta, Vol. 403, 2022, pp. 139500, doi: https://doi.org/10.1016/j.electacta.2021.139500. 

  16. F. Liu, S. Wang, J. Li, X. Wang, Z. Yong, Y. Cui, D. Liang, and Z. Wang, "Novel double cross-linked membrane based on poly (ionic liquid) and polybenzimidazole for high-temperature proton exchange membrane fuel cells", Journal of Power Sources, Vol. 515, 2021, pp. 230637, doi: https://doi.org/10.1016/j.jpowsour.2021.230637. 

  17. Q. Ge, X. Liang, L. Ding, J. Hou, J. Miao, B. Wu, Z. Yang, and T. Xu, "Guiding the selfassembly of hyperbranched anion exchange membranes utilized in alkaline fuel cells", Journal of Membrane Science, Vol. 573, 2019, pp. 595-601, doi: https://doi.org/10.1016/j.memsci.2018.12.049. 

  18. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Effect of functionalized SiO 2 toward proton conductivity of composite membranes for PEMFC application", Int. J. Energy Res., Vol. 43, No. 10, 2019, pp. 5333-5345, doi: https://doi.org/10.1002/er.4610. 

  19. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide", Journal of Membrane Science, Vol. 611, 2020, pp. 118385, doi: https://doi.org/10.1016/j.memsci.2020.118385. 

  20. J. Liu, X. Yan, L. Gao, L. Hu, X. Wu, Y. Dai, X. Ruan, and G. He, "Long-branched and densely functionalized anion exchange membranes for fuel cells", Journal of Membrane Science, Vol. 581, 2019, pp. 82-92, doi: https://doi.org/10.1016/j.memsci.2019.03.046. 

  21. K. Wang, Q. Wu, X. Yan, J. Liu, L. Gao, L. Hu, N. Zhang, Y. Pan, W. Zheng, and G. He, "Branched poly(ether ether ketone) based anion exchange membrane for H 2 /O 2 fuel cell", Int. J. Hydrogen Energy, Vol. 44, No. 42, 2019, pp. 23750-23761, doi: https://doi.org/10.1016/j.ijhydene.2019.07.080. 

  22. X. L. Gao, Q. Yang, H. Y. Wu, Q. H. Sun, Z. Y. Zhu, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Orderly branched anion exchange membranes bearing long flexible multi-cation side chain for alkaline fuel cells", Journal of Membrane Science, Vol. 589, 2019, pp. 117247, doi: https://doi.org/10.1016/j.memsci.2019.117247. 

  23. A. Sannigrahi, S. Takamura, and P. Jannasch, "Block copolymers combining semifluorinated poly(arylene ether) and sulfonated poly(arylene ether sulfone) segments for proton exchange membranes", Int. J. Hydrogen Energy, Vol. 39, No. 28, 2014, pp. 15718-15727, doi: https://doi.org/10.1016/j.ijhydene.2014.07.155. 

  24. A. H. N. Rao, S. Y. Nam, and T. H. Kim, "Combshaped alkyl imidazolium-functionalized poly(arylene ether sulfone)s as high performance anionexchange membranes", Journal of Materials Chemistry A, Vol. 3, No. 16, 2015, pp. 8571-8580, doi: https://doi.org/10.1039/C5TA01123J. 

  25. H. S. Dang and P. Jannasch, "Exploring different cationic alkyl side chain designs for enhanced alkaline stability and hydroxide ion conductivity of anion-exchange membranes", Macromolecules, Vol. 48, No. 16, 2015, pp. 5742-5751, doi: https://doi.org/10.1021/acs.macromol.5b01302. 

  26. C. X. Lin, X. L. Huang, D. Guo, Q. G. Zhang, A. M. Zhu, M. L. Ye, and Q. L. Liu, "Side-chain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells", J. Mater. Chem. A, Vol. 4, No. 36, 2016, pp. 13938-13948, doi: https://doi.org/10.1039/C6TA05090E. 

  27. A. D. Mohanty, S. E. Tignor, J. A. Krause, Y. K. Choe, and C. Bae, "Systematic alkaline stability study of polymer backbones for anion exchange membrane applications", Macromolecules, Vol. 49, No. 9, 2016, pp. 3361-3372, doi: https://doi.org/10.1021/acs.macromol.5b02550. 

  28. E. N. Hu, C. X. Lin, F. H. Liu, X. Q. Wang, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Poly(arylene ether nitrile) anion exchange membranes with dense flexible ionic side chain for fuel cells", Journal of Membrane Science, Vol. 550, 2018, pp. 254-265, doi: https://doi.org/10.1016/j.memsci.2018.01.010. 

  29. M. Niu, C. Zhang, G. He, F. Zhang, and X. Wu, "Pendent piperidinium-functionalized blend anion exchange membrane for fuel cell application", Int. J. Hydrogen Energy, Vol. 44, No. 29, 2019, pp. 15482-15493, doi: https://doi.org/10.1016/j.ijhydene.2019.04.172. 

  30. X. Gong, X. Yan, T. Li, X. Wu, W. Chen, S. Huang, Y. Wu, D. Zhen, and G. He, "Design of pendent imidazolium side chain with flexible ether-containing spacer for alkaline anion exchange membrane", Journal of Membrane Science, Vol. 523, 2017, pp. 216-224, doi: https://doi.org/10.1016/j.memsci.2016.09.050. 

  31. X. Q. Wang, C. X. Lin, F. H. Liu, L. Li, Q. Yang, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Alkali-stable partially fluorinated poly(arylene ether) anion exchange membranes with a claw-type head for fuel cells", J. Mater. Chem. A, Vol. 6, No. 26, 2018, pp. 12455-12465, doi: https://doi.org/10.1039/C8TA03437K. 

  32. Y. Xu, N. Ye, D. Zhang, Y. Yang, J. Yang, and R. He, "Imidazolium functionalized poly(aryl ether ketone) anion exchange membranes having star main chains or side chains", Renewable Energy, Vol. 127, 2018, pp. 910-919, doi: https://doi.org/10.1016/j.renene.2018.04.077. 

  33. K. Wang, Z. Zhang, S. Li, H. Zhang, N. Yue, J. Pang, and Z. Jiang, "Side-chain-type anion exchange membranes based on poly(arylene ether sulfone)s containing high-density quaternary ammonium groups", ACS Appl. Mater. Interfaces, Vol. 13, No. 20, 2021, pp. 23547-23557, doi: https://doi.org/10.1021/acsami.1c00889. 

  34. D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar, and K. S. Nahm, "Novel sulfonated poly(arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics", Polym. Int., Vol. 60, No. 1, 2011, pp. 85-92, doi: https://doi.org/10.1002/pi.2914. 

  35. X. Li, K. Wang, D. Liu, L. Lin, and J. Pang, "Poly(arylene ether ketone) with tetra quaternary ammonium carbazole derivative pendant for anion exchange membrane", Polymer, Vol. 195, 2020, pp. 122456, doi: https://doi.org/10.1016/j.polymer.2020.122456. 

  36. J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6FBPA and perfluorobiphenylene units", Int. J. Hydrogen Energy, Vol. 38, No. 14, 2013, pp. 6268-6274, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144. 

  37. A. N. Lai, P. C. Hu, J. W. Zheng, S. F. Zhou, L. Zhang, "Fluorene-containing poly(arylene ether sulfone nitrile)s multiblock copolymers as anion exchange membranes", Int. J. Hydrogen Energy, Vol. 44, No. 44, 2019, pp. 24256-24266, doi: https://doi.org/10.1016/j.ijhydene.2019.07.134. 

  38. J. S. Olsson, T. H. Pham, and P. Jannasch, "Tuning poly(arylene piperidinium) anionexchange membranes by copolymerization, partial quaternization and crosslinking", Journal of Membrane Science. Vol. 578, 2019, pp. 183-195, doi: https://doi.org/10.1016/j.memsci.2019.01.036. 

  39. S. Gahlot and V. Kulshrestha, "Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM", ACS Appl. Mater. Interfaces, Vol. 7, No. 1, 2015, pp. 264-272, doi: https://doi.org/10.1021/am506033c. 

  40. M. Fang, D. Liu, S. Neelakandan, M. Xu, D. Liu, and L. Wang, "Sidechain effects on the properties of highly branched imidazoliumfunctionalized copolymer anion exchange membranes", Applied Surface Science, Vol. 493, 2019, pp. 1306-1316, doi: https://doi.org/10.1016/j.apsusc.2019.07.059. 

  41. D. Liu, M. Xu, M. Fang, J. Chen, and L. Wang, "Branched comb-shaped poly(arylene ether sulfone)s containing flexible alkyl imidazolium side chains as anion exchange membranes", J. Mater. Chem. A, Vol. 6, No. 23, 2018, pp. 10879, doi: https://doi.org/10.1039/C8TA02115E. 

  42. K. D. Kreuer, A. Rabenau, and W. Weppner, "Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors", Angewandte Chemie, Vol. 21, No. 3, 1982, pp. 208-209, doi: https://doi.org/10.1002/anie.198202082. 

  43. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Simultaneous improvement of anion conductivity and cell durability through the formation of dense ion clusters of F-doped graphitic carbon nitride/quaternized poly(phenylene oxide) composite membrane", Journal of Membrane Science, Vol. 650, 2022, pp. 120384, doi: https://doi.org/10.1016/j.memsci.2022.120384. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로