$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

동해 연안에 출현하는 고무꺽정이(Dasycottus setiger)의 섭식생태
Dietary Habitats of Spinyhead Sculpin Dasycottus setiger in the Coastal Waters of the East Sea, Korea 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.55 no.3, 2022년, pp.345 - 352  

박주면 (한국해양과학기술원 독도전문연구센터) ,  정해근 (국립수산과학원 동해수산연구소 자원환경과) ,  김범식 (강릉원주대학교 해양생태환경학과) ,  정용우 (강릉원주대학교 해양생태환경학과) ,  이충일 (강릉원주대학교 해양생태환경학과)

Abstract AI-Helper 아이콘AI-Helper

In this study, the dietary habits of the spinyhead sculpin Dasycottus setiger were investigated based on 156 specimens collected seasonally between May 2018 and February 2019 from the East Sea off the Korean coast. In terms of the weight contribution (%W), the main food items of the spinyhead sculpi...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본연구의 결과는 동해 연안 저서생태계 기능을 파악하기 위한 기초 자료가 되고 향후 연구 해역에서 어종간 섭식관계 및 먹이망연구를 위한 중요한 자료가 될 것이다. 또한, 본 연구 결과는 잠재적 심해 어종인 고무꺽정이 연구를 통하여 동해 심해생태계를 이해하기 위한 기초자료가 될 것이다.
  • 본 연구는 동해 북부와 중부 해역에 출현하는 고무꺽정이의 먹이생물과 크기 및 해역에 따른 먹이생물 차이에 대한 정보를 제공해 주었다. 위내용물 분석 결과 고무꺽정이는 저서 갑각류와 어류를 주로 섭식하는 어류-갑각류 식자임을 나타냈다.
  • 본 연구는 동해 연안 저서생태계 주요 포식자 중 하나인 고무꺽정이의 위내용물 분석을 통하여 1) 주요 먹이생물을 파악하고, 2) 성장에 따른 위내용물 조성 차이를 분석하며, 3) 채집 해역(위도)에 따라 어떤 섭식특성을 나타내는지 조사하였다. 본연구의 결과는 동해 연안 저서생태계 기능을 파악하기 위한 기초 자료가 되고 향후 연구 해역에서 어종간 섭식관계 및 먹이망연구를 위한 중요한 자료가 될 것이다.
본문요약 정보가 도움이 되었나요?

참고문헌 (45)

  1. Anderson MJ, Gorley RN and Clarke KR. 2008. PERMANOVA+ for Primer: Guide to software and statistical methods. PRIMER-E, Plymouth Marine Laboratory, Plymouth, U.K., 214. 

  2. Baeck GW, Park JM, Choi HC and Huh SH. 2013. Diet composition in summer of rosefish Helicolenus hilgendorfii on the southeastern coast of Korea. Ichthyol Res 60, 75-79. https://doi.org/10.1007/s10228-012-0306-y. 

  3. Chizinski CJ, Huber CG, Longoria M and Pope KL. 2007. Intraspecific resource partitioning by an opportunistic strategist, inland silverside Menidia beryllina. J Appl Ichthyol 23, 147-151. https://doi.org/10.1111/j.1439-0426.2006.00811.x. 

  4. Choi JH, Hong BK, Jun YY, Kim JN, Choi YM and Yoo OH. 2009. Feeding comparison of three deep-sea fish, Lumpenella longirostris, Malacocottus gibber and Bothrocara hollandi, in the East Sea. Korean J Fish Aquat Sci 42, 151-156. https://doi.org/10.5657/kfas.2009.42.2.151. 

  5. Clarke KR and Gorley RN. 2015. Primer v7: User manual/tutorial. PRIMER-E, Plymouth, U.K., 296. 

  6. Fedorov VV, Chereshnev IA, Nazarkin MV, Shestakov AV and Volobuev VV. 2003. Catalog of marine and freshwater fishes of the northern part of the Sea of Okhotsk. Dalnauka, Vladivostok, Russia, 204. 

  7. Ferry LA and Cailliet GM. 1996. Sample size and data analysis: are wecharacterizing and comparing diet properly?. In: International Congress on the Biology of Fishes. MacKinlay D and Shearer K, eds. University of California, San Francisco, CA, U.S.A., 71-80. 

  8. Gerking SD. 1994. Feeding ecology of fish. Academic Press, San Diego, CA, U.S.A., 416. 

  9. Gibson RN, Robb L, Wennhage H and Burrows MT. 2002. Ontogenetic changes in depth distribution of juvenile flatfishes in relation to predation risk and temperature on a shallowwater nursery ground. Mar Ecol Prog Ser 229, 233-244. https://doi.org/10.3354/meps229233. 

  10. Heo JH and Kim YH. 2018. A new record of the genus Anonyx (Crustacea: Amphipoda: Uristidae) from Korean waters. Anim Syst Evol Diver, 34, 119-125. https://doi.org/10.5635/ASED.2018.34.2.009. 

  11. Heo JH and Kim YH. 2021. Two new record of the genus Anonyx (Crustacea: Amphipoda: Uristidae) from Korean waters. J Species Res 10, 267-275. https://doi.org/10.12651/JSR.2021.10.3.267. 

  12. Huveneers C, Otway NM, Gibbs SE and Harcourt RG. 2007. Quantitative dietassessment of wobbegong sharks (genus orectolobus) in new south wales, Australia. ICES J Mar Sci 64, 1272-1281. https://doi.org/10.1093/icesjms/fsm111. 

  13. Hyslop EJ. 1980. Stomach contents analysis-a review of methods and their application. J Fish Biol 17, 411-429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x. 

  14. Jewett SC, Day RH and Feder HM. 1989. Feeding biology of the blackfin sculpin (Malacocottus kincaidi Gilbert and Thompson, 1905) and the spinyhead sculpin (Dasycottus setiger Bean, 1890) in the northeastern Gulf of Alaska. Pac Sci 43, 144-151. 

  15. Jo SG and Jeon MK. 2007. Mysidacea (Crustacea) from the sandy beaches of the Eastern coast of Korea with four new records in the Korean waters. Ocean Sci J 42, 171-178. https://doi.org/10.1007/BF03020921. 

  16. Jung HK, Lee CI, Park HJ and Park JM. 2020. Influences of oceanographic features on spatial and temporal distributions of size spectrum of walleye pollock, Gadus chalcogrammus inhabiting middle eastern coast of Korea. Korean J Ichthyol 32, 148-159. 

  17. Kim CH and Kim K. 1983. Characteristic and origin of the cold water mass along in the coast of Korea. J Ocean Soc Korea, 18, 73-83. 

  18. Kim IS, Choi Y, Lee CL, Lee YJ, Kim BJ and Kim JH. 2005. Illustrated Book of Korean Fishes. Kyo-Hak Publishing Co., Seoul, Korea, 615. 

  19. Langton RW. 1982. Diet overlap between Atlantic cod, Gadus morhua, silver hake Merluccius bilinearis and fifteen other northwest Atlantic finfish. Fish Bull 80, 745-759. 

  20. Laptikhovsky V and Brickle P. 2011. Resource partitioning in two carcinophagous confamiliars: distribution and feeding habits of psychrolutid fish on the southern Patagonian shelf. Polar Biol 34, 1375-1384. https://doi.org/10.1007/s00300-011-0992-3. 

  21. Lee CI, Jung HK, Kwon SM, Han MH, Seol KS and Park JM. 2018. Depth-dependent variability of fish fauna in the coastal waters off Hupo, East Sea. Korean J Ichthyol 30, 36-45. 

  22. Lee JY, Kang DJ, Kim IN, Rho T, Lee T, Kang CK and Kim KR. 2009. Spatial and temporal variability in the pelagic ecosystem of the East Sea (Sea of Japan): a review. J Mar Syst 78, 288-300. https://doi.org/10.1016/j.jmarsys.2009.02.013. 

  23. Marshall AD, Kyne PM and Bennett MB. 2008. Comparing the diet of two sympatric urolophid elasmobranchs (Trygonoptera testacea Muller & Henle and Urolophus kapalensis Yearsley & Last): evidence of ontogenetic shifts and possible resource partitioning. J Fish Biol 72, 883-898. https://doi.org/10.1111/j.1095-8649.2007.01762.x. 

  24. Mito K. 1974. Food relationships in the demersal fish community in the Bering Sea on the walleye pollock fishing grounds in October and November of 1972. M.S. Thesis, Hokkaido University, Hakodate, Japan. 

  25. Naganuma K. 2000. The Sea of Japan as the natural environment of marine organisms. Bull Japan Sea Natl Fish Res Inst 50, 1-42. 

  26. Napazakov VV and Chuchukalo VI. 2006. Feeding of soft sculpin Malacocottus zonurus (Psychrolutidae) in the western Bering Sea. J Ichthyol 46, 600-605. https://doi.org/10.1134/S0032945206080078. 

  27. Orlov A and Binohlan C. 2009. Length-weight relationships of deep-sea fishes from the western Bering Sea. J Appl Ichthyol 25, 223-227. https://doi.org/10.1111/j.1439-0426.2009.01215.x. 

  28. Park JM and Huh SH. 2017. Dietary habits and feeding strategy of the fivespot flounder, Pseudorhombus pentophthalmus in the southeastern coast of Korea. Ichthyol Res 64, 93-103. https://doi.org/10.1007/s10228-016-0546-3. 

  29. Park JM, Jung HK and Lee CI. 2021. Factors influencing dietary changes of walleye pollock, Gadus chalcogrammus, inhabiting the East Sea off the Korean coast. J Mar Sci Eng 9, 1154. https://doi.org/10.3390/jmse9111154. 

  30. Park KY, Park KH, Lee SI, Park HW, Hong SE, Yang JH and Choi SH. 2007. Maturity and spawning of black edged sculpin, Gymnocanthus herzensteini in the East Sea. Korean J Ichthyol 19, 101-106. 

  31. Park HH, Jeong EC, Bae BS, Yang YS, Hwang SJ, Park JH, Kim YS, Lee SI and Choi SH. 2007. Fishing investigation and species composition of the catches caught by a bottom trawl in the deep East Sea. J Korean Soc Fish Ocean Technol 43, 183-191. https://doi.org/10.3796/KSFT.2007.43.3.183. 

  32. Persson L and Diehl S. 1990. Mechanistic individual-based approaches in the population/community ecology of fish. Ann Zool Fennici 27, 165-182. 

  33. Pinkas L, Oliphant MS and Iverson ILK. 1971. Food habits of albacore, bluefin tuna, and bonito in California waters. Fish Bull 152, 1-139. 

  34. Platell ME and Potter IC. 2001. Partitioning of food resources amongst 18 abundant benthic carnivorous fish species in marine waters on the lower west coast of Australia. J Exp Mar Biol Ecol 261, 31-54. https://doi.org/10.1016/S0022-0981(01)00257-X. 

  35. Scharf FS, Juanes F and Rountree RA. 2000. Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophicniche breadth. Mar Ecol Prog Ser 208, 229-248. https://doi.org/10.3354/meps208229. 

  36. Sainte-Marie B. 1992. Foraging of scavenging deep-sea lysian-assoid amphipods. In: Deep-sea Food Chains and the Global Carbon Cycle. Rowe GT and Pariente V, eds. Kluwer Academic Publishers, Dordrecht, Netherlands, 105-124. 

  37. Sohn MH, Lee HW, Hong BK and Chun YY. 2010. Seasonal variation of species composition by depths in deep sea ecosystem of the East Sea of Korea. J Korean Soc Fish Ocean Technol 46, 376-391. https://doi.org/10.3796/KSFT.2010.46.4.376. 

  38. Sohn MH, Park JH, Yoon BS, Choi YM and Kim JK. 2015a. Species composition and community structure of demersal fish caught by a danish seine fishery in the coastal waters of the middle and southern East Sea, Korea. Korean J Fish Aquat Sci 48, 529-541. https://doi.org/10.5657/KFAS.2015.0529. 

  39. Sohn MH, Yoon SC, Lee SI, Yoon BS, Cha HK, Kim JB, Kalchugin P and Solomatov S. 2015b. Variations in species composition of fishes caught by trawl survey in the northwestern East Sea of Russian EEZ and southwestern East Sea of Korean EEZ. J Korean Soc Fish Ocean Technol 51, 355-369. https://doi.org/10.3796/KSFT.2015.51.3.355. 

  40. Stefanescu C, Rucabado J and Lloris D. 1992. Depth-size trends in western Mediterranean demersal deep-sea fishes. Mar Ecol Prog Ser 81, 205-213. 

  41. Stoner AW and Livingston RJ. 1984. Ontogenetic patterns in diet and feeding morphology in sympatric sparid fishes from sea-grass meadow. Copeia 1984, 174-178. 

  42. Takekawa A and Ishimaru S. 2001. Two new species of the genus Anonyx (Amphipoda: Gammaridea: Lysianassoidea) from Onagawa Bay, Northeastern Japan. Zool Sci 18, 405-416. https://doi.org/10.2108/zsj.18.405. 

  43. White WT, Platell ME and Potter IC. 2004. Comparisons between the diets of four abundant species of elasmobranchs in a subtropical embayment: implications for resource partitioning. Mar Biol 144, 439-448. https://doi.org/10.1007/s00227-003-1218-1. 

  44. Yang JH, Lee SI, Cha HK, Yoon SC, Chang DS and Chun YY. 2008. Age and growth of the sandfish, Arctoscopus japonicus in the East Sea of Korea. J Korean Soc Fish Ocean Technol 44, 312-322. https://doi.org/10.3796/KSFT.2008.44.4.312. 

  45. Yang JH, Lee SI, Hwang SJ, Park JH, Kwon HC, Park KY and Choi SH. 2007. Maturity and spawning of spinyhead sculpin, Dasycottus setiger (Bean) in the East Sea, Korea. Korean J Ichthyol 19, 179-184. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로