$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

계층적 군집분석을 이용한 반도체 웨이퍼의 불량 및 불량 패턴 탐지
Wafer bin map failure pattern recognition using hierarchical clustering 원문보기

응용통계연구 = The Korean journal of applied statistics, v.35 no.3, 2022년, pp.407 - 419  

정주원 (고려대학교 데이터 통계학과) ,  정윤서 (고려대학교 데이터 통계학과)

초록
AI-Helper 아이콘AI-Helper

반도체는 제조 공정이 복잡하고 길어 결함이 발생될 때 빠른 탐지와 조치가 이뤄져야 결함으로 인한 손실을 최소화할 수 있다. 테스트 공정을 거쳐 구성된 웨이퍼 빈 맵(WBM)의 체계적인 패턴을 탐지하고 분류함으로써 문제의 원인을 유추할 수 있다. 이 작업은 수작업으로 이뤄지기 때문에 대량의 웨이퍼를 단 시간에 처리하는 데 한계가 있다. 본 논문은 웨이퍼 빈 맵의 정상 여부를 구분하기 위해 계층적 군집 분석을 활용한 새로운 결함 패턴 탐지 방법을 제시한다. 제시하는 방법은 여러 장점이 있다. 군집의 수를 알 필요가 없으며 군집분석의 조율 모수가 적고 직관적이다. 동일한 크기의 웨이퍼와 다이(die)에서는 동일한 조율 모수를 가지므로 대량의 웨이퍼도 빠르게 결함을 탐지할 수 있다. 소량의 결함 데이터만 있어도 그리고 데이터의 결함비율을 가정하지 않더라도 기계학습 모형을 훈련할 수 있다. 제조 특성상 결함 데이터는 구하기 어렵고 결함의 비율이 수시로 바뀔 수 있기 때문에 필요하다. 또한 신규 패턴 발생시에도 안정적으로 탐지한다. 대만 반도체 기업에서 공개한 실제 웨이퍼 빈 맵 데이터(WM-811K)로 실험하였다. 계층적 군집 분석을 이용한 결함 패턴탐지는 불량의 재현율이 96.31%로 기존의 공간 필터(spatial filter)보다 우수함을 보여준다. 결함 분류는 혼합 유형에 장점이 있는 계층적 군집 분석을 그대로 사용한다. 직선형과 곡선형의 긁힘(scratch) 결함의 특징에 각각 주성분 분석고유값과 2차 다항식결정계수를 이용하고 랜덤 포레스트 분류기를 이용한다.

Abstract AI-Helper 아이콘AI-Helper

The semiconductor fabrication process is complex and time-consuming. There are sometimes errors in the process, which results in defective die on the wafer bin map (WBM). We can detect the faulty WBM by finding some patterns caused by dies. When one manually seeks the failure on WBM, it takes a long...

주제어

표/그림 (9)

참고문헌 (20)

  1. Alawieh M, Wang F, and Li X (2016). Identifying systematic spatial failure patterns through wafer clustering. Volume 2016-July, pages 910-913. 

  2. Chang CW, Chao TM, Horng JT, Lu CF, and Yeh RH (2012). Development pattern recognition model for the classification of circuit probe wafer maps on semiconductors. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(12), 2089-2097. 

  3. Chien CF, Hsu SC, and Chen YJ (2013). A system for online detection and classification of wafer bin map defect patterns for manufacturing intelligence. International Journal of Production Research, 51(8), 2324-2338. 

  4. Hijmans RJ (2021). Raster: geographic data analysis and modeling. R package version 3.5-11. 

  5. Hsu SC and Chien CF (2007). Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing. International Journal of Production Economics, 107(1), 88-103. 

  6. Huang CJ (2002). Application of neural networks and filtered back projection to wafer defect cluster identification. Proceedings of the 4th International Symposium on Electronic Materials and Packaging, pages 99-105. 

  7. Huang CJ (2007). Clustered defect detection of high quality chips using self-supervised multilayer perceptron. Expert Systems with Applications, 33(4), 996-1003. 

  8. Huang CJ, Wang CC, and Wu CF (2002). Image processing techniques for wafer defect cluster identification. IEEE Design and Test of Computers, 19(2), 44-48. 

  9. Jeong YS, Kim SJ, and JeongM(2008). Automatic identification of defect patterns in semiconductor wafer maps using spatial correlogram and dynamic time warping. IEEE Transactions on Semiconductor Manufacturing, 21(4), 625-637. 

  10. Jin C, Na H, Piao M, Pok G, and Ryu K (2019). A novel dbscan-based defect pattern detection and classification framework for wafer bin map. IEEE Transactions on Semiconductor Manufacturing, 32(3), 286-292. 

  11. Kim B, Jeong YS, Tong S, Chang IK, and Jeong MK (2016). Stepdown spatial randomness test for detecting abnormalities in dram wafers 40 with multiple spatial maps. IEEE Transactions on Semiconductor Manufacturing, 29(1), 57-65. 

  12. Kim J, Lee Y, and Kim H (2018). Detection and clustering of mixed-type defect patterns in wafer bin maps. IISE Transactions, 50(2), 99-111. 

  13. Li TS and Huang CL (2009). Defect spatial pattern recognition using a hybrid som-svm approach in semiconductor manufacturing. Expert Systems with Applications, 36(1), 374-385. 

  14. Wang CH (2008). Recognition of semiconductor defect patterns using spatial filtering and spectral clustering. Expert Systems with Applications, 34(3), 1914-1923. 

  15. Wang CH (2009). Separation of composite defect patterns on wafer bin 42 map using support vector clustering. Expert Systems with Applications, 36(2 PART 1), 2554-2561. 

  16. Wang CH, Kuo W, and Bensmail H (2006a). Detection and classification of defect patterns on semiconductor wafers. IIE Transactions (Institute of Industrial Engineers), 38(12), 1059-1068. 

  17. Wang CH, Wang SJ, and Lee WD (2006b). Automatic identification of spatial defect patterns for semiconductor manufacturing. International Journal of Production Research, 44(23), 5169-5185. 

  18. Wu MJ, Jang JSR, and Chen JL (2015). Wafer map failure pattern recognition and similarity ranking for largescale data sets. IEEE Transactions on Semiconductor Manufacturing, 28(1), 1-12. 

  19. Yu J and Lu X (2016). Wafer map defect detection and recognition using joint local and nonlocal linear discriminant analysis. IEEE Transactions on Semiconductor Manufacturing, 29(1), 33-43. 

  20. Yuan T, Bae S, and Park, J. (2010). Bayesian spatial defect pattern recognition in semiconductor fabrication using support vector clustering. International Journal of Advanced Manufacturing Technology, 51(5-8), 671-683. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로