$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

부지특성화을 위한 지하수의 수리화학 특성 연구: 주성분 분석을 중심으로
Hydrochemical Investigation for Site Characterization: Focusing on the Application of Principal Component Analysis 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.27 no.spc, 2022년, pp.34 - 50  

유순영 (고려대학교 스마트지중환경관리기술연구단) ,  김한석 (고려대학교 스마트지중환경관리기술연구단) ,  전성천 ((주)지오그린21) ,  이종화 ((주)지오그린21) ,  윤성택 (고려대학교 지구환경과학과) ,  권만재 (고려대학교 지구환경과학과) ,  조호영 (고려대학교 지구환경과학과)

Abstract AI-Helper 아이콘AI-Helper

Principal component analysis (PCA) was conducted using hydrochemical data in four testbeds (A to D) built for the development of site characterization technologies to assess the hydrochemical processes controlling the hydrochemistry in each site. The PCA results indicated the nitrogen loading to dee...

주제어

표/그림 (16)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구는 다변량 통계분석기법 중 하나인 PCA의 부지특성화기술로써의 범용성과 한계점을 평가하기 위해, 4개의 테스트베드 지역을 대상으로 지하수 수리화학을 이용하여 PCA를 수행하였다. 비록 PCA 결과가 이상치(outlier)에 의해 영향을 받는 경향이 나타나기도 했지만, 대부분의 PCA 결과는 각 테스트베드의 부지 특성 및 오염 특성을 잘 반영하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Abdi, H., 2003, Factor Rotations in Factor Analyses, Encyclopedia for Research Methods for the Social Sciences, Sage: Thousand Oaks, CA, 792-795. 

  2. Andong National University, Geogreen21 Co. Ltd., 2020, Tracing pollution sources and planning remediation strategies of groundwater contamination in Jeonju. Korea Environmental Industry & Technology Institute. 

  3. Atekwana, E.A., Atekwana, E., Legall, F.D., and Krishnamurthy, R.V., 2005, Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer, Journal of Contaminant Hydrology 80(3-4), 149-167. 

  4. Baek, W. and Lee, J.Y., 2011, Source apportionment of trichloroethylene in groundwater of the industrial complex inWonju, Korea: a 15-year dispute and perspective, Water and Environment Journal, 25(3), 336-344. 

  5. Burg, A. and Gavrieli, I., 2013, Groundwater contamination and water-rock interaction during leakage of industrial waste water into a carbonate aquifer in an arid zone, Israel, Procedia Earth and Planetary Science, 7, 101-104. 

  6. Farnham, I.M., Singh, A.K., Stetzenbach, K.J., and Johannesson, K.H., 2002, Treatment of nondetects in multivariate analysis of groundwater geochemistry data, Chemometrics and Intelligent Laboratory Systems, 60(1-2), 265-281. 

  7. Gulgundi, M.S. and Shetty, A., 2019, Source apportionment of groundwater pollution using unmix and positive matrix factorization, Environmental Processes, 6, 457-473. 

  8. Hamzaoui-Azaza, F., Zammouri, M., Ameur, M., Sy, M.B., Gueddari, M., and Bouhlila, R., 2020, Hydrogeochemical modeling for groundwater management in arid and semiarid regions using MODFLOW and MT3DMS: A case study of the Jeffara of Medenine coastal aquifer, South-Eastern Tunisia, Natural Resource Modeling, 33(4), e12282. 

  9. Hatcher, L., 1994, A Step-by-Step Approach to Using the SAS System for Factor Analysis and Structural Equation Modeling. SAS Institute, Inc., Cary. 

  10. Jeong, C.-H., Lee, Y.J., Lee, Y.C., Kim, M.S., Kim, H.K., Kim, T.S., Jo, B.U., and Choi, H.Y., 2016, Hydrochemistry and occurrences of natural radioactive materials from groundwater in various geological environment, The Journal of Engineering Geology, 26(4), 531-549. 

  11. KIGAM (Korea Institute of Geoscience and Mineral Resources), 1969, Geological map of Korea: Samrye (1:50,000). 

  12. KIGAM, 1981, Geological map of Korea: Ttukseom (1:50,000). 

  13. KIGAM, 2019, Technology development of borehole elemental concentration logs and high resolution hydraulic characterization for the prediction of rock-fluid interactions in subsurface environments, Korea Environmental Industry & Technology Institute. 

  14. Kim, H.-R., Yu, S., Oh, J., Kim, K.-H., Lee, J.-H., Moniruzzaman, M., Kim, H.K., and Yun, S.-T., 2019, Nitrate contamination and subsequent hydrogeochemical processes of shallow groundwater in agro-livestock farming districts in South Korea, Agriculture, Ecosystems and Environment, 273, 50-61. 

  15. Kim, H.-S., Lee, S.-H., Jo, H.Y., Finneran, K.T., and Kwon, M.J. 2021, Diversity and composition of soil Acidobacteria and Proteobacteria communities as a bioindicator of past land-use change from forest to farmland, Science of the Total Environment, 797, 148944. 

  16. Kim, K.H., Yun, S.T., Kim, H.K., and Kim, J.W., 2015, Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches, J. Geochem. Explor., 148, 196-205. 

  17. Kim, S.H., Kim, H.-R., Yu, S., Kang, H.-J., Hyun, I.-H., Song, Y.-C., Kim, H., and Yun, S.-T., 2021, Shift of nitrate sources in groundwater due to intensive livestock farming on Jeju Island, South Korea: With emphasis on legacy effects on water management, Water Research, 191, 116814. 

  18. Krause, S., Aloisi, G., Engel, A., Liebetrau, V., and Treude, T., 2014, Enhanced calcite dissolution in the presence of the aerobic methanotroph methylosinus trichosporium, Geomicrobiology Journal, 31(4), 325-337. 

  19. Korea University, 2021, Development of field application technologies for optimal diagnosis, assessment, and predictioin of contamination fate and transport in subsurface environments, Korea Environmental Industry & Technology Institute. 

  20. Joyce, S., Applegate, D., Appleyard, P., Gordon, A., Heath, T., Hunter, F., Hoek , J., Jack son, P., Swan, D., Woollard, H., and Wheeler, A.F., 2015, Groundwater flow and reactive transport modelling in ConnectFlow, SKB R-14-19, https://skb.se/publikation/2482142/R-14-19.pdf 

  21. Ledesma, R.D., Valero-Mora, P., and Macbeth, G., 2015, The scree test and the number of factors: a dynamic graphics approach, Spanish Journal of Psychology, 18, e11, 1-10. 

  22. Lee, J.-H., Yun, S.-T., Yu, S., Yoo, C.-H., Jeong, Y.-S., Kim, K.-H., Kim, H.-R., and Kim, H., 2022, Development of an integrated hydrochemical index for delineating livestock manure-derived groundwater plumes in agro-livestock farming areas, Ecological Indicators, 138, 108838. 

  23. Lee, J.-Y., Cheon, J.-Y., Lee, K.-K., Lee, S.-Y., and Lee, M.-H., 2001, Statistical evaluation of geochemical parameter distribution in a ground water system contaminated with petroleum hydrocarbons, Journal of Environmental Quality, 30(5), 1548-1563. 

  24. Lee, K.-J., Yun, S.-T., Yu, S., Kim, K.-H., Lee, J.-H., and Lee, S.-H., 2019, The combined use of self-organizing map technique and fuzzy c-means clustering to evaluate urban groundwater quality in Seoul metropolitan city, South Korea, Journal of Hydrology, 569, 685-697. 

  25. MacCallum, R.C., Widaman, K.F., Zhang, S., and Hong, S., 1999, Sample size in factor analysis, Psychological Methods, 4(1), 84-99. 

  26. Mohapatra, P.K., Vijay, R., Pujari, P.R., Sundaray, S.K., and Mohanty, B.P., 2011, Determination of processes affecting groundwater quality in the coastal aquifer beneath Puri city, India: a multivariate statistical approach, Water Science & Technology, 64(4), 809-817. 

  27. Oh, J., Kim, H.-R., Yu, S., Kim, K.-H., and Yun, S.-T., 2021, Delineating the impacts of poultry burial leachate on shallow groundwater in a reclaimed agro-livestock farming area, using multivariate statistical analysis of hydrochemical data, Environmental Science and Pollution Research, 28, 7742-7755. 

  28. R Core Team, 2020, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ 

  29. Runkel, A.C., Tipping, R.G., Meyer, J.R., Steenberg, J.R., Retzler, A.J., Parker, B.L., Green, J.A., Barry, J.D., and Jones, P.M., 2018, A multidisciplinary-based conceptual model of a fractured sedimentary bedrock aquitard: improved prediction of aquitard integrity, Hydrogeology Journal, 26, 2133-2159. 

  30. Schreier, C.G., Walker, W.J., Burns, J., and Wilkenfeld, R., 1999, Total organic carbon as a screening method for petroleum hydrocarbons, Chemosphere, 39(3), 503-510. 

  31. Sejong University, 2019, Development of strategies and technologies for investigation and assessment of fluid flow path in subsurface environments. Korea Environmental Industry & Technology Institute. 

  32. Shaukat, S.S., Rao, T.A., and Khan, M.A., 2016, Impact of sample size on principal component analysis ordination of an environmental data set: effects on eigenstructure, Ekologia (Bratislava), 35(2), 173-190. 

  33. SKB, 2006. Hydrogeochemical evaluation, Preliminary site description Laxemar subarea - version 2.1. Swedish Nuclear Fuel and Waste Management Co. (SKB). Report R-06-70. 

  34. Thrun, M.C., Ultsch, A., and Breuer, L., 2021, Explainable AI framework for multivariate hydrochemical time series, Mach. Learn. Knowl. Extr., 3(1), 170-204. 

  35. Tizro, A.T., Ghashghaie, M., Georgiou, P., and Voudouris, K., 2014, Time series analysis of water quality parameters, Journal of Applied Research in Water and Wastewater, 1(1), 40-50. 

  36. Yang, J.-H. and Lee, K.-K., 2012, Locating plume sources of multiple chlorinated contaminants in groundwater by analyzing seasonal hydrological responses in an industrial complex, Wonju, Korea, Geosciences Journal, 16(3), 301-311. 

  37. Yu, S., Chae, G., Oh, J., Kim, S.H., Kim, D.I., and Yun, S.T., 2021, Hydrochemical and isotopic difference of spring water depending on flow type in a stratigraphically complex karst area of South Korea, Front. Earth Sci., 736, 712865. 

  38. Zhang, K., Hu, Z., Zeng, F., Yang, X., Wang, J., Jing, R., Zhang, H., Li, Y., and Zhang, Z., 2019, Biodegradation of petroleum hydrocarbons and changes in microbial community structure in sediment under nitrate-, ferric-, sulfate-reducing and methanogenic conditions, Journal of Environmental Management, 249, 109425. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로