$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한국산 흑대기 Paraplagusia japonica (참서대과)의 형태 및 분자 마커에 의한 집단구조
Population Structure of Korean Paraplagusia japonica (Cynoglossidae) Based on Morphological and Molecular Markers 원문보기

Korean journal of Ichthyology = 한국어류학회지, v.34 no.2, 2022년, pp.73 - 85  

박경현 (국립수산과학원 생명공학과) ,  김진구 (부경대학교 수산생명과학부 자원생물학전공)

초록
AI-Helper 아이콘AI-Helper

참서대과 어류는 한국, 중국, 일본 등 전 세계적으로 식용으로 인기가 있으며, 그중에서도 흑대기(Paraplagusia japonica)는 한국 전 해역에 서식한다. 적절한 관리방안 수립을 위해서는 형태학적, 분자적 관점에서 흑대기의 집단구조를 명확히 하는 것이 필수적이다. 본 연구에서는 2008년부터 2021년까지 국내 6개 지역에서 총 132개체의 흑대기를 채집했다. 계측 형질에서 정준판별분석(CDA) 결과 서해(인천) 집단은 남해(통영·부산)와 동해(포항·동해·속초) 집단과 약간 차이가 있는 것으로 나타났다. 계수 형질에 대한 Kruskal-Wallis test에서도 유사한 결과가 나타났다. 또한, 미토콘드리아 DNA Cytochrome b 염기서열 849 bp를 기반으로 한 neighbor-joining과 maximum-likelihood tree는 흑대기가 높은 유의성(Φst=0.0781, P<0.001)을 갖는 두 lineage (A와 B로 지정)로 나뉘어져 있음을 보여주었다. 그러나 흥미롭게도 혼합 해역(동남해)의 두 lineage는 형태학적 특징에서 유의한 차이가 없었다. 본 연구 결과는 한국산 흑대기가 플라이스토세 후기 동안 분화된 역사를 겪었으나, 혼합 해역에서 2차 접촉이 발생할 수 있다는 가능성을 시사한다.

Abstract AI-Helper 아이콘AI-Helper

The cynoglossid fishes are popular for food in the world including Korea, China and Japan, and among them, Paraplagusia japonica lives all over the sea of Korea. In order to establish appropriate management measure, it is essential to clarify population structure of P. japonica from the morphologica...

주제어

참고문헌 (77)

  1. An, H.S., H.W. Kang, H.S. Han, J.Y. Park, J.I. Myeong and C.M. An. 2014. Population genetic structure of the tongue sole (Cyno-glossus semilaevis) in Korea based on multiplex PCR assays with 12 polymorphic microsatellite markers. Genes. Genom., 36: 539-549. https://doi.org/10.1007/s13258-014-0190-0. 

  2. Avise, J.C. 1994. Molecular markers, natural history and evolution. Chapman and Hall Press, New York, U.S.A., p. 511. 

  3. Bartlett, S.E. and W.S. Davidson. 1991. Identification of Thunnus tuna species by the polymerase chain reaction and direct sequence analysis of mitochondrial cytochrome b genes. Can. J. Fish. Aquat. Sci., 48: 309-317. https://doi.org/10.1139/f91-043. 

  4. Bowen, B.W., A. Muss, L.A. Rocha and W.S. Grant. 2006. Shallow mtDNA coalescence in Atlantic pygmy angelfishes (Genus Centropyge) indicates a recent invasion from the Indian Ocean. J. Hered., 97: 1-12. https://doi.org/10.1093/jhered/esj006. 

  5. Brown, W.M., E.M. Prager, A. Wang and A.C. Wilson. 1982. Mito-chondrial DNA sequences of primates: tempo and mode of evolution. J. Mol. Evol., 18: 225-239. https://doi.org/10.1007/BF01734101. 

  6. Buonaccorsi, V.P., J.R. McDowell and J.E. Graves. 2001. Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Mol. Ecol., 10: 1179-1196. https://doi.org/10.1046/j.1365-294X.2001.01270.x. 

  7. Choi, K.H., E.Y. Chung and G.M. Park. 2013. Phylogenetic relationship and DNA polymorphism of Boleophthalmus pectinirostris and Scartelaos gigas (Teleostei: Gobiidae) of Korea. Korean J. Ichthyol., 25: 149-156. 

  8. Colborn, J., R.E. Crabtree, J.B. Shaklee, E. Pfeiler and B.W. Bowen. 2001. The evolutionary enigma of bonefishes (Albula spp.): Cryptic species and ancient separations in a globally distributed shorefish. Evol., 55: 807-820. https://doi.org/10.1111/j.0014-3820.2001.tb00816.x. 

  9. Darriba, D., G.L. Taboada, R. Doallo and D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods, 9: 772. https://doi.org/10.1038/nmeth.2109. 

  10. Evans, R.D., L. Van Herwerden, G.R. Russ and A.J. Frisch. 2010. Strong genetic but not spatial subdivision of two reef fish spe-cies targeted by fishers on the Great Barrier Reef. Fish. Res., 102: 16-25. https://doi.org/10.1016/j.fishres.2009.10.002. 

  11. Excoffier, L., P.E. Smouse and J.M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genet., 131: 479-491. https://doi.org/10.1093/genetics/131.2.479. 

  12. Excoffier, L. and H.E. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x. 

  13. Grant, W.S. and B.W. Bowen. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered., 89: 415-426. https://doi.org/10.1093/jhered/89.5.415. 

  14. Grant, W.S. and F.M. Utter. 1984. Biochemical population genetics of Pacific herring (Clupea pallasi). Can. J. Fish. Aquat. Sci., 41: 856-864. https://doi.org/10.1139/f84-102. 

  15. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic. Acids. Symp. Ser., 41: 95-98. 

  16. Haddon, M. and T.J. Willis. 1995. Morphometric and meristic comparison of orange roughy (Hoplostethus atlanticus, Trachichthyidae) from the Puysegur Bank and Lord Howe Rise, New-Zealand, and its implications for stock structure. Mar. Biol., 123: 19-27. https://doi.org/10.1007/BF00350319. 

  17. Han, Z.Q., T.X. Gao, T. Yanagimoto and Y. Sakurai. 2008. Deep phylogeographic break among white croaker Pennahia argentata (Sciaenidae, Perciformes) populations in North-western Pacific. Fish. Sci., 74: 770-780. https://doi.org/10.1111/j.1444-2906.2008.01588.x. 

  18. Han, Z., T. Yanagimoto, Y. Zhang and T. Gao. 2012. Phylogeography study of Ammodytes personatus in Northwestern Pacific: Pleistocene isolation, temperature and current conducted secondary contact. PLoS ONE, 7: e37425. https://doi.org/10.1371/journal.pone.0037425. 

  19. Harpending, R.C. 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol., 66: 591-600. 

  20. He, L., T. Mukai, C.K. Hou, Q. Ma and J. Zhang. 2015. Biogeographical role of the Kuroshio Current in the amphibious mudskipper Periophthalmus modestus indicated by mitochondrial DNA data. Sci. Rep., 5: 1-12. https://doi.org/10.1038/srep15645. 

  21. Hewitt, G. 2000. The genetic legacy of the Quaternary ice ages. Nature, 405: 907-913. https://doi.org/10.1038/35016000. 

  22. Hong, S.E., J.K. Kim, J.N. Yu, K.Y. Kim, C.I. Lee, K.E. Hong, K.Y. Park and M.G. Yoon. 2012. Genetic variation in the Asian shore crab Hemigrapsus sanguineus in Korean coastal waters as inferred from mitochondrial DNA sequences. Fish. Aquat. Sci., 15: 49-56. https://doi.org/10.5657/FAS.2012.0049. 

  23. Hubbs, C.L. 1922. Variations in the number of vertebrae and other meristic characters of fishes correlated with the temperature of water during development. Am. Nat., 56: 360-372. https://doi.org/10.1086/279875. 

  24. Hutchings, J.A. and D.J. Fraser. 2008. The nature of fisheries and farming induced evolution. Mol. Ecol., 17: 294-313. https://doi.org/10.1111/j.1365-294X.2007.03485.x. 

  25. Imbrie, J., E.A. Boyle, S.C. Clemens, A. Duffy, W.R. Howard, G. Kukla, J. Kutzbach, D.G. Martinson, A. Mclntyre, A.C. Mix, B. Molfino, J.J. Morley, L.C. Peterson, N.G. Pisias, W.L. Prell, M.E. Raymo, N.J. Shackletons and J.R. Toggweiler. 1992. On the structure and origin of major glaciation cycles. I. Linear responses to Milankovich forcing. Paleoceanogr., 7: 701-738. 

  26. Jang, S.H., J.W. Lee and J.K. Kim. 2019. Molecular and morphometric variations in the sea raven, Hemitripterus villosus from Korea, with its implication on fisheries management. Ocean Sci. J., 54: 419-433. https://doi.org/10.1007/s12601-019-0021-y. 

  27. Kai, Y., K. Sakai, J.W. Orr and T. Nakabo. 2011. Secondary contact in the Sea of Japan: the case of the Careproctus rastrinus species complex (Liparidae). Ichthyol. Res., 58: 366-369. https://doi.org/10.1007/s10228-011-0226-2. 

  28. Kaiser, T.S., D. Neumann, D.G. Heckel and T.U. Berendonk. 2010. Strong genetic differentiation and postglacial origin of populations in the marine midge Clunio marinus (Chironomidae, Diptera). Mol. Ecol., 19: 2845-2857. https://doi.org/10.1111/j.1365-294X.2010.04706.x. 

  29. Kato, S., S. Arakaki, K. Kikuchi and S. Hirase. 2020. Complex phylogeographic patterns in the intertidal goby Chaenogobius annularis around Kyushu Island as a boundary zone of three different seas. Ichthyol. Res., 68: 86-100. https://doi.org/10.1007/s10228-020-00772-4. 

  30. Kim, E.A. 2012. Morphological and genetic variation of geographic populations of mud skipper, Scartelaos gigas and Boleophthalmus pectinirostris from Korea. Pukyong National Univ. Press, Busan, Korea, pp. 1-73. 

  31. Kim, I.S. and Y. Choi. 1994. A taxonomic revision of the family Cynoglossidae (Pisces, Pleuronectiformes) from Korea. Bull. Korean Fish. Soc., 27: 803-813. 

  32. Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated book of Korean fishes. Kyo-Hak Press, Seoul, Korea, p. 615. 

  33. Kim, J.K. 2009. Diversity and conservation of Korean marine fishes. Korean J. Ichthyol., 21: 52-62. 

  34. Kim, J.K., R. Doiuchi and T. Nakabo. 2006a. Molecular and morphological differences between two geographic populations of Salanx ariakensis (Salangidae) from Korea and Japan. Ichthyol. Res., 53: 52-62. https://doi.org/10.1007/s10228-005-0315-1. 

  35. Kim, J.K., J.Y. Park and Y.S. Kim. 2006b. Genetic diversity, relationships and demographic history of three geographic populations of Ammodytes personatus (Ammodytidae) from Korea inferred from mitochondrial DNA control region and 16S rRNA sequence data. Kor. J. Genet., 28: 343-351. 

  36. Kim, J.K., J.H. Park, Y.S. Kim, Y.H. Kim, H.J. Hwang, S.J. Hwang, S.I. Lee and T.I. Kim. 2008. Geographic variations in Pacific sand eels Ammodytes personatus (Ammodytidae) from Korea and Japan using multivariate morphometric analysis. J. Ichthyol., 48: 904-910. https://doi.org/10.1134/S003294520810007X. 

  37. Kim, J.K., S.E. Bae, S.J. Lee and M.G. Yoon. 2017. New insight into hybridization and unidirectional introgression between Ammodytes japonicus and Ammodytes heian (Trachiniformes, Ammodytidae). PLoS ONE, 12: e0178001. https://doi.org/10.1371/journal.pone.0178001. 

  38. Kim, J.K., J.H. Ryu, H.J. Kwun, H.S. Ji, J.H. Park, S.H. Myoung, Y.S. Song, S.J. Lee, H.J. Yu, S.E. Bae, S.H. Jang and W.J. Lee. 2019. Distribution map of sea fishes in Korean peninsula. Ministry of Oceans and Fisheries, Korea Institute of Marine Science and Technology Promotion, and Pukyong National Univ. Press, Seocho and Busan, Korea, p. 486. 

  39. Kim, W.J., K.K. Kim, H.S. Han, B.H. Nam, Y.O. Kim, H.J. Kong, J.K. Noh and M. Yoon. 2010. Population structure of the olive flounder (Paralichthys olivaceus) in Korea inferred from microsatellite marker analysis. J. Fish. Biol., 76: 1958-1971. https://doi.org/10.1111/j.1095-8649.2010.02638.x. 

  40. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120. https://doi.org/10.1007/BF01731581. 

  41. Kitamura, A. and K. Kimoto. 2006. History of the inflow of the warm Tsushima Current into the Sea of Japan between 3.5 and 0.8 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol., 236: 355-366. https://doi.org/10.1016/j.palaeo.2005.11.015. 

  42. Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35: 1547-1549. https://doi.org/10.1093/molbev/msy096. 

  43. Li, W.H. 1997. Molecular Evolution. Sinauer Associates Press, Massachusetts, U.S.A., 432 pp. 

  44. Lindsey, C.C. 1988. Factors controlling meristic variation. In: Hoar, W.S. and D.J. Randall (eds.) Fish Physiology. Academic Press, Cambridge, U.S.A., pp. 197-234. 

  45. Liu, J.X., T.X. Gao, K. Yokogawa and Y.P. Zhang. 2006a. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol. Phylogenet. Evol., 39: 799-811. https://doi.org/10.1016/j.ympev.2006.01.009. 

  46. Liu, J.X., T.X. Gao, Z.M. Zhuang, X.S. Jin, K. Yokogawa and Y.P. Zhang. 2006b. Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis). Mol. Phylogenet. Evol., 40: 712-723. https://doi.org/10.1016/j.ympev.2006.04.019. 

  47. Liu, J.X., T.X. Gao, S.F. Wu and Y.P. Zhang. 2007. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck and Schlegel, 1845). Mol. Ecol., 16: 275-288. https://doi.org/10.1111/j.1365-294X.2006.03140.x. 

  48. Liu, S.Y.V., T. Kokita and C.F Dai. 2008. Population genetic structure of the neon damselfish (Pomacentrus coelestis) in the north-western Pacific Ocean. Mar. Biol., 154: 745-753. 

  49. Masuda, H., K. Amaoka, C. Araga, T. Uyeno and T. Yoshino. 1984. The fishes of the Japanese Archipelago. Vol. 1. Tokai Univ. Press, Tokyo, Japan, p. 437. 

  50. Minami, T. 1982. The early life history of a tongue fish Paraplagusia japonica. Bull. Jpn. Soc. Sci. Fish., 48: 1041-1046. 

  51. Muss, A., D.R. Robertson, C.A. Stepien, P. Wirtz and B.W. Bowen. 2001. Phylogeography of Ophioblennius: The role of ocean currents and geography in reef fish evolution. Evol., 55: 561-572. https://doi.org/10.1111/j.0014-3820.2001.tb00789.x. 

  52. Myoung, S.H., T.W. Ban and J.K. Kim. 2016. Population structure of Liparis tanakae (PISCES, Liparidae) from Korea based on morphological and molecular traits. Korean J. Fish. Aquat. Sci., 49: 198-207. https://doi.org/10.5657/KFAS.2016.0198. 

  53. Myoung, S.H. and J.K. Kim. 2014. Genetic diversity and population structure of the gizzard shad, Konosirus punctatus (Clupeidae, Pisces), in Korean waters based on mitochondrial DNA control region sequences. Genes. Genom., 36: 591-598. https://doi.org/10.1007/s13258-014-0197-6. 

  54. Nakabo, T. and U. Yamada. 2013. Family Cynoglossidae. In: Nakabo, T. (ed.), Fishes of Japan with pictorial keys to the species, 3rd ed. Tokai Univ. Press, Tokyo, Japan, p. 1388. 

  55. Ni, I.H. and K.Y. Kwok. 1999. Marine fish fauna in Hong Kong waters. Zool. Stud., 38: 130-152. 

  56. Park, G.M. and H.B. Song. 2010. Phylogenetic divergence in the south torrent catfish, Liobagrus mediadiposalis (Pisces; Amblycipitidae) of Korea. J. Fisher. Soc. Taiwan, 37: 173-181. https://doi.org/10.29822/JFST.201009.0002. 

  57. Peng, S., Z. Shi, J. Hou, W. Wang, F. Zhao and H. Zhang. 2009. Genetic diversity of silver pomfret (Pampus argenteus) populations from the China Sea based on mitochondrial DNA control region sequences. Biochem. Syst. Ecol., 37: 626-632. 

  58. Reiss, H., G. Hoarau, M. Dickey-Collas and W.J. Wolff. 2009. Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish. Fish., 10: 361-395. https://doi.org/10.1111/j.1467-2979.2008.00324.x. 

  59. Rogers, A.R. and H. Harpending. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol., 9: 552-569. https://doi.org/10.1093/oxfordjournals.molbev.a040727. 

  60. Rozas, J., A. Ferrer-Mata, J.C. Sanchez-DelBarro, S. Guirao-Rico, P. Librado, S.E. Ramos-Onsins and A. Sanchez-Gracia. 2017. DnaSP v6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol., 34: 3299-3302. https://doi.org/10.1093/molbev/msx248. 

  61. Santos, S., T. Hrbek, I.P. Farias, H. Schneider and I. Sampaio. 2006. Population genetic structuring of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America: deep genetic divergence without morphological change. Mol. Ecol., 15: 4361-4373. 

  62. Santos, S., H. Schneider and I. Sampaio. 2003. Genetic differentiation of Macrodon ancylodon (Sciaenidae, Perciformes) populations in Atlantic coastal waters of South America as revealed by mtDNA analysis. Genet. Mol. Biol., 26: 151-161. 

  63. Schneider, S. and L. Excoffier. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genet., 152: 1079-1089. https://doi.org/10.1093/genetics/152.3.1079. 

  64. Shen, K.N., B.W. Jamandre, C.C. Hsu, W.N. Tzeng and J.D. Durand. 2011. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally distributed flathead mullet Mugil cephalus. BMC Evol. Biol., 11: 83. https://doi.org/10.1186/1471-2148-11-83. 

  65. Shen, S.C. 1983. Cynoglossid fishes (Pleuronectiformes: Cynoglossidae) of Taiwan. Bull. Inst. Zool. Academia Sinica, 22: 105-118. 

  66. Silva, A. 2003. Morphometric variation among sardine (Sardina pilchardus) populations from the northeastern Atlantic and the western Mediterranean. ICES J. Mar. Sci., 60: 1352-1360. https://doi.org/10.1016/S1054-3139(03)00141-3. 

  67. Swain, D.P. and C.J. Foote. 1999. Stocks and chameleons: the use of phenotypic variation in stock identification. Fish. Res., 43: 113-128. https://doi.org/10.1016/S0165-7836(99)00069-7. 

  68. Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673. 

  69. Umino, T., T. Kajihara, H. Shiozaki, T. Ohkawa, D.S. Jeong and K. Ohara. 2009. Wild stock structure of Girella punctata in Japan revealed shallow genetic differentiation but subtle substructure in subsidiary distributions. Fish. Sci., 75: 909-919. https://doi.org/10.1007/s12562-009-0118-9. 

  70. Villaluz, A.C. and H.R. Maccrimmon. 1988. Meristic variations in milkfish Chanos chanos from Philippine waters. Mar. Biol., 97: 145-150. https://doi.org/10.1007/BF00391254. 

  71. Vladykov, V.D. 1934. Environmental and taxonomic characters of fishes. Trans. Roy. Can. Inst., 20: 99-140. 

  72. Waldman, J.R. 2005. Definition of Stocks. In: Cadrin S.X., K.D. Friedland and J.R. Waldman (eds.), Stock Identification Methods. Academic Press, Cambridge, U.S.A., pp. 7-16. 

  73. Wilson, A.C., R.L. Cann, S.M. Carr, M. George, U.B. Gyllensten, K.M. Helm-Bychowski, R.G. Higuchi, S.R. Palumbi, E.M. Prager, R.D. Sage and M. Stoneking. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc., 26: 375-400. https://doi.org/10.1111/j.1095-8312.1985.tb02048.x. 

  74. Wright, S. 1978. Evolution and the genetics of populations: variability within and among natural populations. Chicago Univ. Press, Chicago, U.S.A., p. 590. 

  75. Yamada, U., M. Tokimura, H. Horikawa and T. Nakabo. 2007. Fishes and fisheries of the East China and Yellow Seas. Tokai Univ. Press, Tokyo, Japan, p. 1139. 

  76. Yoon, M.G., J.Y. Jung and D.S. Kim. 2013. Genetic diversity and gene flow patterns in Pollicipes mitella in Korea inferred from mitochondrial DNA sequence analysis. Fish. Aquat. Sci., 16: 243-251. https://doi.org/10.5657/FAS.2013.0243. 

  77. Zar, J.H. 1999. Biostatistical analysis. Pearson Prentice Hall Press, New Jersey, U.S.A., p. 960. 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로