$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

위내용물 분석과 안정동위원소 분석을 이용한 겨울철 동해 북부 연안에 출현하는 명태(Gadus chalcogrammus)와 대구(G. macrocephalus)의 먹이분할 연구
Winter Food Resource Partitioning between Sympatric Gadus macrocephalus and G. chalcogrammus in the Northern Coast of East Sea, South Korea Inferred from Stomach Contents and Stable Isotopes Analyses 원문보기

Korean journal of Ichthyology = 한국어류학회지, v.34 no.2, 2022년, pp.102 - 112  

박주면 (한국해양과학기술원 독도전문연구센터) ,  정해근 (국립수산과학원 동해수산연구소 자원환경과) ,  이충일 (강릉원주대학교 해양생태환경학과) ,  박현제 (강릉원주대학교 해양생태환경학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 위내용물 분석과 안정동위원소13C and δ15N) 분석을 통하여 우리나라 동해 북부 연안에 출현하는 명태(Gadus chalcogrammus)와 대구(G. macrocephalus)의 종내 및 종간 먹이자원 분할을 조사하였다. 두 종은 중층성 육식성 어종으로 명태는 저서성 및 중층성 갑각류를 주로 섭식하였고, 대구는 어류를 주로 섭식하였다. 위내용물 분석 결과에 대한 Non-metric multidimensional scaling (nMDS) ordination과 permutational multivariate analysis of variance (PERMANOVA)은 두 종의 종내 및 종간 먹이조성의 차이와 먹이자원 분할을 보여줬다. 안정동위원소 분석 결과 δ15N 값은 종간 유사하였지만, δ13C 값은 대구가 높은 값을 나타내어 두 종간 생태지위 차이를 보여줬다. 명태는 체장 증가에 따라 큰 체장군에서 새우류와 두족류를 더 많이 섭식하는 먹이 전환을 나타냈지만, 대구는 체장군 간 먹이조성이 유사하였다. 안정동위원소 분석에서도 체장군 간 차이를 보였는데, 두 종의 큰 체장군은 작은 체장군에 비해 더 높은 δ15N 값을 나타낸다. 결론적으로 본 연구는 명태와 대구의 위내용물 분석과 안정동위원소 분석을 통하여 종내 및 종간 먹이 차이와 생태지위 분할의 증거를 보여줬다.

Abstract AI-Helper 아이콘AI-Helper

This study investigated dietary habits and intra- and inter-specific food resource partitioning of co-occurring walleye pollock (Gadus chalcogrammus) and Pacific cod (G. macrocephalus) from the waters off the north-eastern coast of South Korea using stomach contents and stable isotopes (δ13C ...

주제어

참고문헌 (51)

  1. Adams, C.F., A.I. Pinchuk and K.O. Coyle. 2007. Seasonal changes in the diet composition and prey selection of walleye pollock (Theragra chalcogramma) in the northern Gulf of Alaska. Fish. Res., 84: 378-389. https://doi.org/10.1016/j.fishres.2006.11.032. 

  2. Albers, W.D. and P.J. Anderson. 1985. Diet of Pacific cod, Gadus macrocephalus, and predation on the northern pink shrimp, Pandalus borealis, in Pavlof Bay, Alaska. Fish. Bull., 83: 601-610. 

  3. Alcaraz, C. and E. Garcia-Berthou. 2007. Food of an endangered cyprinodont (Aphanius iberus): ontogenetic diet shift and prey electivity. Environ. Biol. Fish., 78: 193-207. https://doi.org/10.1007/s10641-006-0018-0. 

  4. Anderson, M.J., R.N. Gorley and K.R. Clarke. 2008. PERMANOVA for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth Marine Laboratory, Plymouth, UK, 214pp. 

  5. Barnes, L.M., M. Leclerc, C.A. Gray and J.E. Williamson. 2011. Dietary niche differentiation of five sympatric species of Platycephalidae. Environ. Biol. Fish., 90: 429-441. https://doi.org/10.1007/S10641-010-9752-4. 

  6. Bearhop, S., C.E. Adams, S. Waldron, R.A. Fuller and H. MacLeod. 2004. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol., 73: 1007-1012. https://doi.org/10.1111/j.0021-8790.2004.00861.x. 

  7. Buchheister, A. and R.J. Latour. 2010. Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of a migratory coastal predator, summer flounder (Paralichthys dentatus). Can. J. Fish. Aquat. Sci., 67: 445-461. https://doi.org/10.1139/F09-196. 

  8. Cha, H.K., S.I. Lee, S.C. Yoon, Y.S. Kim, Y.Y. Chun, D.S. Chang and J.H. Yang. 2007. Maturation and spawning of the Pacific cod, Gadus macrocephalus TILESIUS in East Sea of Korea. J. Korean Soc. Fish. Ocean Technol., 43: 320-328. https://doi.org/10.3796/KSFT.2007.43.4.320. 

  9. Chizinski, C.J., C.G. Huber, M. Longoria and K.L. Pope. 2007. Intra-specific resource partitioning by an opportunistic strategist, inland silverside Menidia beryllina. J. Appl. Ichthyol., 23: 147-151. https://doi.org/10.1111/j.1439-0426.2006.00811.x. 

  10. Clarke, K. and R. Gorley. 2015. PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth, UK, 296pp. 

  11. Cortes, E. 1997. A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmo-branch fishes. Can. J. Fish. Aquat. Sci., 54: 726-738. https://doi.org/10.1139/f96-316. 

  12. Cresson, P., S. Ruitton, M. Ourgaud and M. Harmelin-Vivien. 2014. Contrasting perception of fish trophic level from stomach content and stable isotope analyses: a Mediterranean artificial reef experience. J. Exp. Mar. Biol. Ecol., 452: 54-62. https://doi.org/10.1016/j.jembe.2013.11.014. 

  13. Duarte, L.O. and C.B. Garcia. 1999. Diet of the mutton snapper Lutja-nus analis (Cuvier) from the gulf of Salamanca, Colombia, Caribbean Sea. Bull. Mar. Sci., 65: 453-465. 

  14. Elmqvist, T., C. Folke, M. Nystrom, G. Peterson, J. Bengtsson, B. Walker and J. Norberg. 2003. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ., 1: 488-494. https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2. 

  15. Ferry, L.A. and G.M. Cailliet. 1996. Sample size and data analysis: are wecharacterizing and comparing diet properly? In: MacKinlay, D., K. Shearer (eds.), International congress on the biology of fishes. University of California, San Francisco, California, U.S.A., pp. 71-80. 

  16. Froese, R. and D. Pauly. Eds. 2022. FishBase. World Wide Web electronic publication. www.fishbase.org, version (02/2022). 

  17. Fry, B. 2006. Stable Isotope Ecology. Springer-Verlag, New York, U.S.A., 308pp. 

  18. Fry, B. and E.B. Sherr. 1984. δ 13 C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci., 27: 13-47. 

  19. Gerking, S.D. 1994. Feeding ecology of fish, 1st ed. Academic Press, San Diego, U.S.A., 416pp. 

  20. Greenstreet, S.P. and S.I. Rogers. 2006. Indicators of the health of the North Sea fish community: identifying reference levels for an ecosystem approach to management. ICES J. Mar. Sci., 63: 573-593. https://doi.org/10.1016/j.icesjms.2005.12.009. 

  21. Hesslein, R.H., M.J. Capel, D.E. Fox and K.A. Hallard. 1991. Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River basin, Canada. Can. J. Fish. Aquat. Sci., 48: 2258-2265. https://doi.org/10.1139/f91-265. 

  22. Huh, S.H., J.M. Park and G.W. Baeck. 2016. Diet partitioning between co-occurring Amblychaeturichthys hexanema and Amblychaeturichthys sciistius in the southeastern Korean waters. Korean J. Ichthyol., 28: 79-86. 

  23. Huveneers, C., N.M. Otway, S.E. Gibbs and R.G. Harcourt. 2007. Quantitative dietassessment of wobbegong sharks (genus orectolobus) in New South Wales, Australia. ICES J. Mar. Sci., 64: 1272-1281. https://doi.org/10.1093/icesjms/fsm111. 

  24. Hyslop, E.J. 1980. Stomach contents analysis - a review of methods and their application. J. Fish Biol., 17: 411-429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x. 

  25. Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated book of Korean fishes. Kyo-hak Publ. Co, Seoul, Korea, 615pp. 

  26. Kim, Y.S., K.H. Han, C.B. Kang and J.B. Kim. 2004. Commercial fishes of the coastal and offshore waters in Korea. 2nd ed. Hanguel, Busan, Korea, 333pp. 

  27. Knickle, D.C. and G.A. Rose. 2014. Dietary niche partitioning in sympatric gadid species in coastal Newfoundland: evidence from stomachs and CN isotopes. Environ. Biol. Fish., 97: 343-355. https://doi.org/10.1007/s10641-013-0156-0. 

  28. Krajewski, J.P., R.M. Bonaldo, C. Sazima and I. Sazima. 2006. Foraging activity and behaviour of two goatfish species (Perciformes: Mullidae) at Fernando de Noronha Archipelago, tropical West Atlantic. Environ. Biol. Fish., 77: 1-8. https://doi.org/10.1007/s10641-006-9046-z. 

  29. Ko, A.R., S.J. Lee, J.H. Yang and G.W. Baeck. 2020. Diet of the walleye pollock Gadus chalcogrammus in the East Sea, Korea. Korean J. Fish. Aquat. Sci., 53: 456-463. https://doi.org/10.5657/KFAS.2020.0456. 

  30. Kwak, S.N., G.W. Baeck and D.W. Klumpp. 2005. Comparative feeding ecology of two sympatric greenling species, Hexagrammos otakii and Hexagrammos agrammus in eelgrass Zostera marina beds. Environ. Biol. Fish., 74: 129-140. https://doi.org/10.1007/s10641-005-7429-1. 

  31. Langton, R.W. 1982. Diet overlap between Atlantic cod, Gadus morhua, silver hake Merluccius bilinearis and fifteen other northwest Atlantic finfish. Fish. Bull., 80: 745-759. 

  32. Lee, C.I., M.H. Han, H.K. Jung, H.J. Park and J.M. Park. 2019. Spawning season, and factors influencing allometric growth pattern and body condition of walleye pollock Gadus chalcogrammus in the middle East Sea, Korea. Korean J. Ichthyol., 31: 141-149. https://doi.org/10.35399/ISK.31.3.3. 

  33. Lin, H.J., W.Y. Kao and Y.T. Wang. 2007. Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan. Estuar. Coast. Shelf Sci., 73: 527-537. https://doi.org/10.1016/j.ecss.2007.02.013. 

  34. MABIK (Marine Biodiversity Institute of Korea). 2021. 2021 National List of Marine Species, I. Marine Vertebrata. Namu Press, Seocheon, Korea, 138pp. 

  35. Marshall, A.D., P.M. Kyne and M.B. Bennett. 2008. Comparing the diet of two sympatric urolophid elasmobranchs (Trygonoptera testacea Muller & Henle and Urolophus kapalensis Yearsley & Last): evidence of ontogenetic shifts and possible resource partitioning. J. Fish Biol., 72: 883-898. https://doi.org/10.1111/j.1095-8649.2007.01762.x. 

  36. Micheli, F. and B.S. Halpern. 2005. Low functional redundancy in coastal marine assemblages. Ecol. Lett., 8: 391-400. https://doi.org/10.1111/j.1461-0248.2005.00731.x. 

  37. O'Shea, O.R., M. Thums, M. Van Keulen, R.M. Kempster and M.G. Meekan. 2013. Dietary partitioning by five sympatric spe- cies of stingray (Dasyatidae) on coral reefs. J. Fish Biol., 82: 1805-1820. https://doi.org/10.1111/jfb.12104. 

  38. Park, J.M., H.K. Jung and C.I. Lee. 2021. Factors influencing dietary changes of walleye pollock, Gadus chalcogrammus, inhabiting the East Sea off the Korean coast. J. Mar. Sci. Eng., 9: 1154. https://doi.org/10.3390/jmse9111154. 

  39. Park, J.M. and S.H. Huh. 2018. Ontogenetic and seasonal change in the diets of the glowbelly Acropoma japonicum Gunther 1859 in the south-eastern waters of Korea. Indian J. Fish., 65: 7-14. https://doi.org/10.21077/ijf.2018.65.1.67628-02. 

  40. Park, J.M., T.F. Gaston and J.E. Williamson. 2017. Resource partitioning in gurnard species using trophic analyses: the importance of temporal resolution. Fish. Res., 186: 301-310. https://doi.org/10.1016/j.fishres.2016.10.005. 

  41. Pinnegar, J.K. and N.V.C. Polunin. 1999. Differential fractionation of δ 13 C and δ 15 N among fish tissues: implications for the study of trophic interactions. Funct. Ecol., 13: 225-231. https://doi.org/10.1046/j.1365-2435.1999.00301.x. 

  42. Platell, M.E. and I.C. Potter. 1999. Partitioning of habitat and prey by abundant and similar-sized species of the Triglidae and Pempherididae (Teleostei) in coastal waters. Estuar. Coast. Shelf Sci., 48: 235-252. https://doi.org/10.1006/ecss.1998.0419. 

  43. Platell, M.E. and I.C. Potter. 2001. Partitioning of food resources amongst 18 abundant benthic carnivorous fish species in marine waters on the lower west coast of Australia. J. Exp. Mar. Biol. Ecol., 261: 31-54. https://doi.org/10.1016/S0022-0981(01)00257-X. 

  44. Qiao, J., J. Hu, Q. Xia, R. Zhu, K. Chen, J. Zhao, Y. Yan, L. Chu and D. He. 2020. Pelagic-benthic resource polymorphism in Schizopygopsis thermalis Herzenstein 1891 (Pisces, Cyprinidae) in a headwater lake in the Salween River system on the Tibetan Plateau. Ecology and evolution, 10(14): 7431-7444. https://doi.org/10.1002/ece3.6470. 

  45. Ross, S.T. 1986. Resource partitioning in fish assemblages: a review of field studies. Copeia, 1986: 352-388. https://doi.org/10.2307/1444996. 

  46. Smith, J.A., L.J. Baumgartner, I.M. Suthers and M.D. Taylor. 2011. Generalist niche, specialist strategy: the diet of an Australian percichthyid. J. Fish Biol., 78: 1183-1199. https://doi.org/10.1111/j.1095-8649.2011.02926.x. 

  47. Stergiou, K.I. and V.S. Karpouzi. 2002. Feeding habits and trophic levels of Mediterranean fish. Rev. Fish Biol. Fish., 11: 217-254. https://doi.org/10.1023/A:1020556722822. 

  48. Urban, D. 2012. Food habits of Pacific cod and walleye pollock in the northern Gulf of Alaska. Mar. Ecol. Prog. Ser., 469: 215-222. https://doi.org/10.3354/meps10135. 

  49. White, W.T., M.E. Platell and I.C. Potter. 2004. Comparisons between the diets of four abundant species of elasmobranchs in a sub- tropical embayment: implications for resource partitioning. Mar. Biol., 144: 439-448. https://doi.org/10.1007/s00227-003-1218-1. 

  50. Yamamura, O., S. Honda, O. Shida and T. Hamatsu. 2002. Diets of walleye pollock Theragra chalcogramma in the Doto area, northern Japan: ontogenetic and seasonal variations. Mar. Ecol. Prog. Ser., 238: 187-198. https://doi.org/10.3354/meps238187. 

  51. Yoon, S.C., J.H. Yang, J.H. Park, Y.M. Choi, J.H. Park and D.W. Lee. 2012. Feeding habits of the Pacific cod Gadus macrocephalus in the coastal waters off Jumunjin, Gangwondo of Korea. Korean J. Fish. Aquat. Sci., 45: 379-386. https://doi.org/10.5657/KFAS.2012.0379. 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로