$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Biodegradable PLA-based Biocomposites with Spent Coffee Grounds as Degradation Accelerator: Hydrolytic Degradation and Characterization Research 원문보기

한국포장학회지= Korean Journal of Packaging Science & Technology, v.28 no.2, 2022년, pp.89 - 95  

Kim, Youngsan (Department of Packaging, Yonsei University) ,  Lim, Daekyu (Department of Packaging, Yonsei University) ,  Kwon, Sangwoo (Department of Packaging, Yonsei University) ,  Jang, Hyunho (Department of Packaging, Yonsei University) ,  Park, Su-il (Department of Packaging, Yonsei University)

Abstract AI-Helper 아이콘AI-Helper

The goal of this study was to evaluate the effect of spent coffee grounds (SCG) biofiller on the morphological, thermal, mechanical and hydrolytic degradation characteristics of poly(lactic acid) (PLA) based biocomposites. The PLA-based biocomposite films were fabricated by using a high-viscosity kn...

주제어

참고문헌 (26)

  1. Lubis, M., Harahap, M. B., Ginting, M. H. S., Maysarah, S., & Gana, A. 2018. The effect of ethylene glycol as plasticizer against mechanical properties of bioplastic originated from jackfruit seed starch and cocoa pod husk. Nusantara Bioscience, 10(2), 76-80. 

  2. Bilo, F., Pandini, S., Sartore, L., Depero, L. E., Gargiulo, G., Bonassi, A., & Bontempi, E. 2018. A sustainable bioplastic obtained from rice straw. Journal of cleaner production, 200, 357-368. 

  3. Thompson, R. C., Moore, C. J., Vom Saal, F. S., & Swan, S. H. 2009. Plastics, the environment and human health: current consensus and future trends. Philosophical transactions of the royal society B: biological sciences, 364(1526), 2153-2166. 

  4. Filiciotto, L., & Rothenberg, G. 2021. Biodegradable plastics: Standards, policies, and impacts. ChemSusChem, 14(1), 56-72. 

  5. Dauvergne, P. 2018. Why is the global governance of plastic failing the oceans?. Global Environmental Change, 51, 22-31. 

  6. do Val Siqueira, L., Arias, C. I. L. F., Maniglia, B. C., & Tadini, C. C. 2021. Starch-based biodegradable plastics: Methods of production, challenges and future perspectives. Current Opinion in Food Science, 38, 122-130. 

  7. Ghosh, K., & Jones, B. H. 2021. Roadmap to biodegradable plastics-current state and research needs. ACS Sustainable Chemistry & Engineering, 9(18), 6170-6187. 

  8. Ijanu, E. M., Kamaruddin, M. A., & Norashiddin, F. A. 2020. Coffee processing wastewater treatment: a critical review on current treatment technologies with a proposed alternative. Applied Water Science, 10(1), 1-11. 

  9. Saratale, G. D., Bhosale, R., Pugazendhi, A., Mahmoud, E., Sirohi, R., Bhatia, S. K., ... & Kumar, G. 2020. A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production. Bioresource technology, 123800. 

  10. Janissen, B., & Huynh, T. 2018. Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 128, 110-117. 

  11. Wu, C. S. 2015. Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability. Polymer Degradation and Stability, 121, 51-59. 

  12. Essabir, H., Raji, M., Laaziz, S. A., Rodrique, D., & Bouhfid, R. 2018. Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Composites Part B: Engineering, 149, 1-11. 

  13. Rasal, R. M., Janorkar, A. V., & Hirt, D. E. 2010. Poly (lactic acid) modifications. Progress in polymer science, 35(3), 338-356. 

  14. Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M. C. 2019. Poly (lactic acid) blends: Processing, properties and applications. International journal of biological macromolecules, 125, 307-360. 

  15. Wan, L., Zhou, S., & Zhang, Y. 2019. Parallel advances in improving mechanical properties and accelerating degradation to polylactic acid. International journal of biological macromolecules, 125, 1093-1102. 

  16. ISO 16929, Plastics - determination of the degree of disintegration of plastic materials under defined composting conditions in a pilot-scale test. 2019. 

  17. Frone, A. N., Berlioz, S., Chailan, J. F., & Panaitescu, D. M. 2013. Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydrate polymers, 91(1), 377-384. 

  18. Suksut, B., & Deeprasertkul, C. 2011. Effect of nucleating agents on physical properties of poly (lactic acid) and its blend with natural rubber. Journal of Polymers and the Environment, 19(1), 288-296. 

  19. Gaidukova, G., Platnieks, O., Aunins, A., Barkane, A., Ingrao, C., & Gaidukovs, S. 2021. Spent coffee waste as a renewable source for the production of sustainable poly (butylene succinate) biocomposites from a circular economy perspective. RSC advances, 11(30), 18580-18589. 

  20. Sanchez-Acosta, D., Rodriguez-Uribe, A., Alvarez-Chavez, C. R., Mohanty, A. K., Misra, M., Lopez-Cervantes, J., & Madera-Santana, T. J. 2019. Physicochemical characterization and evaluation of pecan nutshell as biofiller in a matrix of poly (lactic acid). Journal of Polymers and the Environment, 27(3), 521-532. 

  21. Chuayjuljit, S., Wongwaiwattanakul, C., Chaiwutthinan, P., & Prasassarakich, P. 2017. Biodegradable poly (lactic acid)/poly (butylene succinate)/wood flour composites: Physical and morphological properties. Polymer Composites, 38(12), 2841-2851. 

  22. Feng, Y., Ashok, B., Madhukar, K., Zhang, J., Zhang, J., Reddy, K. O., & Rajulu, A. V. 2014. Preparation and characterization of polypropylene carbonate bio-filler (eggshell powder) composite films. International Journal of Polymer Analysis and Characterization, 19(7), 637-647. 

  23. Castro-Aguirre, E., Iniguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. 2016. Poly (lactic acid)-Mass production, processing, industrial applications, and end of life. Advanced drug delivery reviews, 107, 333-366. 

  24. Valentina, I., Haroutioun, A., Fabrice, L., Vincent, V., & Roberto, P. 2018. Poly (lactic acid)-based nanobiocomposites with modulated degradation rates. Materials, 11(10), 1943. 

  25. Wang, Y. P., Xiao, Y. J., Duan, J., Yang, J. H., Wang, Y., & Zhang, C. L. (2016). Accelerated hydrolytic degradation of poly (lactic acid) achieved by adding poly (butylene succinate). Polymer Bulletin, 73(4), 1067-1083. 

  26. da Silva, A. P., Pereira, M. D. P., Passador, F. R., & Montagna, L. S. 2020. PLA/Coffee Grounds Composites: A Study of Photodegradation and Biodegradation in Soil. In Macromolecular Symposia (Vol. 394, No. 1, p. 2000091). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로