최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기전기화학회지 = Journal of the Korean Electrochemical Society, v.25 no.3, 2022년, pp.95 - 104
The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-producti...
M. S. Ziegler and J. E. Trancik, Re-examining rates of lithium-ion battery technology improvement and cost decline, Energy Environ. Sci., 14(4), 1635-1651 (2021).
K. Liu, Y. Liu, D. Lin, A. Pei, and Y. Cui, Materials for lithium-ion battery safety, Sci. Adv., 4(6), eaas9820 (2018).
A. Manthiram, X. Yu, and S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater., 2, 16103 (2017).
N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, A lithium superionic conductor, Nat. Mater., 10, 682-686 (2011).
Y. Seino, T. Ota, K. Takada, A. Hayashi, and M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 7(2), 627-631 (2014).
Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 16030 (2016).
H.-J. Deiseroth, S.-T. Kong, M. Schlosser, and C. Reiner, Lithium argyrodite, WO Patent WO/2009/047254 (2009).
K. Terai, F. Utsuno, T. Umeki, M. Nakagawa, and H. Yamaguchi, Sulfide solid electrolyte, WO Patent WO/2018/047565 (2018).
T. Tsukasa, C. Takashi, and I. Takahiro, Sulfide-based solid electrolyte particles, WO Patent WO/2019/176895 (2019).
C. Yu, Y. Li, M. Willans, Y. Zhao, K. R. Adair, F. Zhao, W. Li, S. Deng, J. Liang, M. N. Banis, R. Li, H. Huang, L. Zhang, R. Yang, S. Lu, Y. Huang, and X. Sun, Superionic conductivity in lithium argyrodite solid-state electrolyte by controlled Cl-doping, Nano Energy, 69, 104396 (2020).
P. Adeli, J. D. Bazak, K. H. Park, I. Kochetkov, A. Huq, G. R. Goward, and L. F. Nazar, Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution, Angew. Chem. Int. Ed., 58(26), 8681-8686 (2019).
W. D. Jung, J.-S. Kim, S. Choi, S. Kim, M. Jeon, H.-G. Jung, K. Y. Chung, J.-H. Lee, B.-K. Kim, J.-H. Lee, and H. Kim, Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth, Nano Lett., 20(4), 2303-2309 (2020).
X. Feng, P.-H. Chien, Y. Wang, S. Patel, P. Wang, H. Liu, M. Immediato-Scuotto, and Y.-Y. Hu, Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li 6-x PS 5-x Cl 1+x , Energy Storage Mater., 30, 67-73 (2020).
K. Oh, D. Chang, B. Lee, D.-H. Kim, G. Yoon, I. Park, B. Kim, and K. Kang, Native defects in Li 10 GeP 2 S 12 and their effect on lithium diffusion, Chem. Mater., 30(15), 4995-5004 (2018).
M. A. Kraft, S. Ohno, T. Zinkevich, R. Koerver, S. P. Culver, T. Fuchs, A. Senyshyn, S. Indris, B. J. Morgan, and W. G. Zeier, Inducing high ionic conductivity in the lithium superionic argyrodites Li 6+x P 1-x Ge x S 5 I for all-solid-state batteries, J. Am. Chem. Soc., 140(47), 16330-16339 (2018).
L. Zhou, A. Assoud, Q. Zhang, X. Wu, and L. F. Nazar, New family of argyrodite thioantimonate lithium superionic conductors, J. Am. Chem. Soc., 141(48), 19002-19013 (2019).
Y. Lee, J. Jeong, D.-H. Lim, S.-O. Kim, H.-G. Jung, K. Y. Chung, and S. Yu, Superionic Si-substituted lithium argyrodite sulfide electrolyte Li 6+x Sb 1-x Si x S 5 I for all-solid-state batteries, ACS Sustain. Chem. Eng., 9(1), 120-128 (2021).
Y. Lee, J. Jeong, H. J. Lee, M. Kim, D. Han, H. Kim, J. M. Yuk, K.-W. Nan, K. Y. Chung, H.-G. Jung, and S. Yu, Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-Ion batteries, ACS Energy Lett., 7(1), 171-179 (2022).
A. Banik, T. Famprikis, M. Chidiu, S. Ohno, M. A. Kraft, and W. G. Zeier, On the underestimated influence of synthetic conditions in solid ionic conductors, Chem. Sci., 12, 6238-6263 (2021).
Y.-C. Ha, S.-M. Lee, B. G. Kim, G. Park, J.-W. Park, J. Park, J.-H. Yu, W.-J. Lee, Y.-J. Lee, and H. Choi, Method for producing solid electrolyte, solid electrolyte prepared therefrom, and all-solid battery comprising the same, WO Patent PCT/KR2022/000464 (2022).
A. Miura, N. C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N. H. H. Phuc, A. Matsuda, N. Machida, A. Hayashi, and M. Tatsumisago, Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery, Nat. Rev. Chem., 3, 189-198 (2019).
M. Ghidiu, J. Ruhl, S. P. Culver, and W. G. Zeier, Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective, J. Mater. Chem. A, 7, 17735-17753 (2019).
Z. Liu, W. Fu, E. A. Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J. Rondinone, and C. Liang, Anomalous high ionic conductivity of nanoporous β-Li 3 PS 4 , J. Am. Chem. Soc., 135(3), 975-978 (2013).
K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama, and R. Kanno, Crystal structure and phase transitions of the lithium ionic conductor Li 3 PS 4 , Solid State Ion., 182(1), 53-58 (2011).
M. Calpa, H. Nakajima, S. Mori, Y. Goto, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, N. C. Rosero-Navarro, A. Miura, and K. Tadanaga, Formation mechanism of β-Li 3 PS 4 through decomposition of complexes, Inorg. Chem., 60(10), 6964-6970 (2021).
F. Marchini, B. Porcheron, G. Rousse, L. A. Blanquer, L. Droguet, D. Foix, T. Koc, M. Deschamps, and J. M. Tarascon, The hidden side of nanoporous β-Li 3 PS 4 solid electrolyte, Adv. Energy Mater., 11(34), 2101111 (2021).
E. Rangasamy, Z. Liu, M. Gobet, K. Pilar, G. Sahu, W. Zhou, H. Wu, S. Greenbaum, and C. Liang, An iodide-based Li 7 P 2 S 8 I superionic conductor, J. Am. Chem. Soc., 137(4), 1384-1387 (2015).
S. J. Sedlmaier, S. Indris, C. Dietrich, M. Yavuz, C. Drager, F. von Seggern, H. Sommer, and J. Janek, Li 4 PS 4 I: A Li + superionic conductor synthesized by a solvent-based soft chemistry approach, Chem. Mater., 29(4), 1830-1835 (2017).
S.-J. Choi, S.-H. Lee, Y.-C. Ha, J.-H. Yu, C.-H. Doh, Y. Lee, J.-W. Park, S.-M. Lee, and H.-C. Shin, Synthesis and electrochemical characterization of a glass-ceramic Li 7 P 2 S 8 I solid electrolyte for all-solid-state Li-ion batteries, J. Electrochem. Soc., 165, A957-A962 (2018).
S.-J. Choi, S.-H. Choi, A. D. Bui, Y.-J. Lee, S.-M. Lee, H.-C. Shin, and Y.-C. Ha, LiI-doped sulfide solid electrolyte: enabling a high-capacity slurry-cast electrode by low-temperature post-sintering for practical all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 10(37), 31404-31412 (2018).
A. D. Bui, S.-H. Choi, H. Choi, Y.-J. Lee, C.-H. Doh, J.-W. Park, B. G. Kim, W.-J. Lee, S.-M. Lee, and Y.-C. Ha, Origin of the outstanding performance of dual halide doped Li 7 P 2 S 8 X (X I, Br) solid electrolytes for all-solid-state lithium batteries, ACS Appl. Energy Mater., 4(1), 1-8 (2021).
S. Yubuchi, A. Hayashi, and M. Tatsumisago, Application to all-solid-state batteries with Li 6 PS 5 Br electrolyte prepared by a liquid-phase technique, Meet. Abstr., MA2016-02, 3982 (2016).
S. Yubuchi, M. Uematsu, C. Hotehama, A. Sakuda, A. Hayashi, and M. Tatsumisago, An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol, J. Mater. Chem. A, 7, 558-566 (2019).
L. Zhou, K.-H. Park, X. Sun, F. Lalere, T. Adermann, P. Hartmann, and L. F. Nazar, Solvent-engineered design of argyrodite Li 6 PS 5 X (X Cl, Br, I) solid electrolytes with high ionic conductivity, ACS Energy Lett., 4(1), 265-270 (2019).
M.-J. Kim, I.-H. Choi, S. C. Jo, B. G. Kim, Y.-C. Ha, S.-M. Lee, S. Kang, K.-J. Baeg, and J.-W. Park, A novel strategy to overcome the hurdle for commercial all-solid-state batteries via low-cost synthesis of sulfide solid electrolytes, Small Methods, 5(11), 2100793 (2021).
M. Calpa, N. C. Rosero-Navarro, A. Miura, and K. Tadanaga, Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li 7 P 3 S 11 by a liquid phase process, RSC Adv., 7, 46499-46504 (2017).
F. M. Delnick, G. Yang, E. C. Self, H. M. Meyer III, and J. Nanda, Investigation of complex intermediates in solvent-mediated synthesis of thiophosphate solid-state electrolytes, J. Phys. Chem. C, 124(50), 27396-27402 (2020).
K. Yamamoto, M. Takahashi, K. Ohara, N. H. H. Phuc, S. Yang, T. Watanabe, T. Uchiyama, A. Sakuda, A. Hayashi, M. Tatsumisago, H. Muto, A. Matsuda, and Y. Uchimoto, Synthesis of sulfide solid electrolytes through the liquid phase: optimization of the preparation conditions, ACS Omega, 5(40), 26287-26294 (2020).
M. Calpa, N. C. Rosero-Navarro, A. Miura, K. Terai, F. Utsuno, and K. Tadanaga, Formation mechanism of thiophosphate anions in the liquid-phase synthesis of sulfide solid electrolytes using polar aprotic solvents, Chem. Mater., 32(22), 9627-9632 (2020).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.