$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기계학습을 통한 토양오염물질 농도 예측 및 분포 매핑
Predicting Concentrations of Soil Pollutants and Mapping Using Machine Learning Algorithms 원문보기

환경영향평가 = Journal of environmental impact assessment, v.31 no.4, 2022년, pp.214 - 225  

강혜원 (서울대학교 농업생명과학대학 생태조경.지역시스템공학부) ,  박상진 (서울대학교 환경대학원 협동과정 조경학 및 대학원 융합전공 스마트시티 글로벌 융합) ,  이동근 (서울대학교 농업생명과학대학 조경.지역시스템공학부)

초록
AI-Helper 아이콘AI-Helper

본 연구는 사업시행이 환경에 미치는 부정적 영향을 최소화할 수 있는 방안을 강구하기 위해 환경영향평가 토양 부문을 강조하였다. 영향평가 절차에 대한 일련의 노력으로서 도시개발사업을 대상으로 하는 국가 인벤토리 기반 데이터베이스를 구축하였으며, 세 가지 기계학습 모델 성능 평가 및 토양오염물질 농도분포 매핑을 진행하였다. 여기에서, 가장 우수한 성능을 보여준 Random Forest 모델을 사용하여 대한 민국 수도권 지역을 대상 9가지 토양오염물질을 매핑하였다. 본 연구의 결과는 도시화가 가장 활발한 서울지역에서 아연(Zn), 불소(F) 및 카드뮴(Cd) 농도가 상대적으로 우려되는 것을 발견하였다. 또한, 수은(Hg)과 크롬(Cr6+)의 경우 농도가 기준 이하로 검출되었는데, 이는 중금속 농도에 영향을 미치는 산업 및 공업단지와 같은 오염원 부족이 원인으로 도출되었다. 토양오염물질 공간분포 매핑을 통해 토양특성 및 토지이용 유형과 오염물질 간의 유의한 상관관계를 유추하였다. 이를 통해 사업 현장 위치에 관한 토양오염 최소화 및 계획 결정에 대한 효율적인 토양관리 방안을 구축할 수 있을 것으로 기대한다.

Abstract AI-Helper 아이콘AI-Helper

This study emphasized the soil of environmental impact assessment to devise measures to minimize the negative impact of project implementation on the environment. As a series of efforts for impact assessment procedures, a national inventory-based database was established for urban development projec...

주제어

표/그림 (9)

참고문헌 (39)

  1. Ahirwal J, Nath A, Brahma B, Deb S, Sahoo UK, Nath AJ. 2021. Patterns and driving factors of biomass carbon and soil organic carbon stock in the Indian Himalayan region. Science of the Total Environment 770: 145292. 

  2. Azizi K, Ayoubi S, Nabiollahi K, Garosi Y, Gislum R. 2022. Predicting heavy metal contents by applying machine learning approaches and environmental covariates in west of Iran. Journal of Geochemical Exploration 233: 106921. 

  3. Bae J, Ryu Y. 2015. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landscape and Urban Planning 136: 57-67. 

  4. Cambou A, Shaw RK, Huot H, Vidal-Beaudet L, Hunault G, Cannavo P, Nold F, Schwartz C. 2018. Estimation of soil organic carbon stocks of two cities, New York City and Paris. Science of the Total Environment 644: 452-464. 

  5. Yoon DH, Hong YK, Kim JW, Kim SH, Song GH, Lee KM, Kim SC. 2019. Evaluating Heavy Metal Pollution in Soil Using Pollution Index Model. Korean Society of Soil Science and Fertilizer, 168-168. [Korean Literature] 

  6. Feng Y, Chen S, Tong X, Lei Z, Gao C, Wang J. 2020. Modeling changes in China's 2000-2030 carbon stock caused by land use change. Journal of Cleaner Production 252: 119659. 

  7. Forkuor G, Hounkpatin OK, Welp G, Thiel M. 2017. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models. PloS One 12(1): e0170478. 

  8. Golia EE, Diakoloukas V. 2021. Soil parameters affecting the levels of potentially harmful metals in Thessaly area, Greece: a robust quadratic regression approach of soil pollution prediction. Environmental Science and Pollution Research, 1-18. 

  9. Gomes LC, Faria RM, de Souza E, Veloso GV, Schaefer CEG, Fernandes FEI. 2019. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 340: 337-350. 

  10. Govil PK, Sorlie JE, Murthy NN, Sujatha D, Reddy GLN, Rudolph-Lund K, Krishna AK, Rama MK. 2008. Soil contamination of heavy metals in the Katedan industrial development area, Hyderabad, India. Environmental Monitoring and Assessment 140(1): 313-323. 

  11. Hengl T, Mendes de Jesus J, Heuvelink GB, Ruiperez Gonzalez M, Kilibarda M, Blagotic A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Antonio Guevara M, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12(2): e0169748. 

  12. Jeong TU, Cho EJ, Jeong JE, Ji HS, Lee KS, Yoo PJ, Kim GG, Choi JY, Park JH, Kim SH, Heo JS, Seo DC. 2015. Soil contamination of heavy metals in national industrial complexes, Korea. Korean Journal of Environmental Agriculture 34(2): 69-76. [Korean Literature] 

  13. Jia X, Hu B, Marchant BP, Zhou L, Shi Z, Zhu Y. 2019. A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: A case study in the Yangtze Delta, China. Environmental Pollution 250: 601-609. 

  14. Jun YJ. 2011. Study on characterization of air and soil pollution in Daejeon area using GIS. Master's thesis, Hanbat National University, pp. 1-44. [Korean Literature] 

  15. Kim SM, Choi Y, Yi H, Park HD. 2017. Geostatistical prediction of heavy metal concentrations in stream sediments considering the stream networks. Environmental Earth Sciences 76(2): 1-18. [Korean Literature] 

  16. KIMG. 2000. Natural geological mapping for natural environment. 

  17. Knoll L, Breuer L, Bach M. 2019. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Science of the Total Environment 668: 1317-1327. 

  18. Korea Institute of Geoscience and Mineral Resources. 2007. A method for treating fluorine-contaminated soil induced by fluorite. [Korean Literature] 

  19. Korea Meteorological Administration. 2021. 2020 Metropolitan Meteorological Administration Climate Data Collection, 11-1360619-000006-10. [Korean Literature] 

  20. Li F, Huang J, Zeng G, Liu W, Huang X, Huang B, Gu Y, Shi L, He X, He Y. 2015. Toxic metals in topsoil under different land uses from Xiandao District, middle China: distribution, relationship with soil characteristics, and health risk assessment. Environmental Science and Pollution Research 22(16): 12261-12275. 

  21. Li Y, Wang S, Nan Z, Zang F, Sun H, Zhang Q, Huang W, Bao L. 2019. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China. Science of the Total Environment 663: 307-314. 

  22. Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L. 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of The Total Environment 468-469: 843-853. 

  23. Liang Z, Chen S, Yang Y, Zhou Y, Shi Z. 2019. High-resolution three-dimensional mapping of soil organic carbon in China: Effects of SoilGrids products on national modeling. Science of The Total Environment 685: 480-489. 

  24. Ma W, Tan K, Du P. 2016. Predicting soil heavy metal based on Random Forest model. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4331-4334, IEEE. 

  25. Mahmoudzadeh H, Matinfar HR, Taghizadeh-Mehrjardi R, Kerry R. 2020. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Regional 21: e00260. 

  26. Ministry of Environment. 2010. Summary of the results of the 2009 soil measurement network and soil pollution survey. [Korean Literature] 

  27. Pham BT, Pradhan B, Bui DT, Prakash I, Dholakia MB. 2016. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environmental Modelling & Software 84: 240-250. 

  28. Shahabi H, Hashim M. 2015. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Scientific Reports 5(1): 1-15. 

  29. Shen LQ, Amatulli G, Sethi T, Raymond P, Domisch S. 2020. Estimating nitrogen and phosphorus concentrations in streams and rivers, within a machine learning framework. Scientific Data 7(1): 1-11. 

  30. Varol M. 2011. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials 195: 355-364. 

  31. Vasenev VI, Stoorvogel JJ, Leemans R, Valentini R, Hajiaghayeva RA. 2018. Projection of urban expansion and related changes in soil carbon stocks in the Moscow Region. Journal of Cleaner Production 170: 902-914. 

  32. Viscarra-Rossel RA, Lee J, Behrens T, Luo Z, Baldock J, Richards A. 2019. Continentalscale soil carbon composition and vulnerability modulated by regional environmental controls. Nature Geoscience 12(7): 547-552. 

  33. Wang H, Yilihamu Q, Yuan M, Bai H, Xu H, Wu J. 2020. Prediction models of soil heavy metal (loid) s concentration for agricultural land in Dongli: A comparison of regression and random forest. Ecological Indicators 119: 106801. 

  34. Yang H, Huang K, Zhang K, Weng Q, Zhang H, Wang F. 2021. Predicting heavy metal adsorption on soil with machine learning and mapping global distribution of soil adsorption capacities. Environmental Science & Technology 55(20): 14316-14328. 

  35. Yoon JK, Kim DH, Kim TS, Park JG, Chung IR, Kim JH, Kim H. 2009. Evaluation on natural background of the soil heavy metals in Korea. Journal of Soil and Groundwater Environment 14(3): 32-39. 

  36. Zhang D, Tsai JJ. (Eds.). 2006. Advances in machine learning applications in software engineering. Igi Global. 

  37. Zhang H, Yin A, Yang X, Fan M, Shao S, Wu J, Wu P, Zhang M, Gao C. 2021. Use of machine-learning and receptor models for prediction and source apportionment of heavy metals in coastal reclaimed soils. Ecological Indicators 122: 107233. 

  38. Zhang H, Yin S, Chen Y, Shao S, Wu J, Fan M, Chen F, Gao C. 2020. Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China. Journal of Cleaner Production 273: 122858. 

  39. Zhou T, Geng Y, Ji C, Xu X, Wang H, Pan J, Bumberger J, Haase D, Lausch A. 2021. Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Science of the Total Environment 755: 142661. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로