$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

양극산화 방법을 이용한 기능성 알루미늄 3003 합금의 표면 특성 및 부식 거동 연구
A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method 원문보기

Corrosion science and technology, v.21 no.4, 2022년, pp.290 - 299  

김지수 (동의대학교신소재공학과) ,  정찬영 (동의대학교신소재공학과)

Abstract AI-Helper 아이콘AI-Helper

Anodizing is an electrochemical surface treatment method conferring corrosion resistance and durability by forming a thick anodization film on the metal surface. Aluminum has a long service life and high thermal conductivity and formability, as well as excellent corrosion resistance. Aluminum 3003 a...

주제어

표/그림 (15)

참고문헌 (40)

  1. C. Jeong, J. Lee, K. Sheppard, CH Choi, Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392 

  2. C.J. Donahue, J.A. Exline, Anodizing and Coloring Aluminum Alloys, Journal of Chemical Education, 91, 711 (2014). Doi: https://doi.org/10.1021/ed3005598 

  3. M. Saeeddikhani, M. Javidi, A. Yazdani, Anodizing of 2024-T3 aluminum alloy in sulfuric-boric-phosphoric acids and its corrosion behavior, Transactions of Nonferrous Metals Society of China, 23, 2551 (2013). Doi: https://doi.org/10.1016/S1003-6326(13)62767-3 

  4. C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395 

  5. Y. Alivov, M. Pandikunta, S. Nikishin, Z.Y. Fan, The anodization voltage influence on the properties of TiO2 nanotubes grown by electrochemical oxidation, Nanotechnology, 20, 225602 (2009). Doi: https://doi.org/10.1088/0957-4484/20/22/225602 

  6. C. Blawert, W. Dietzel, E. Ghali, Anodizing Treatments for Magnesium Alloys and Their Effect on Corrosion Resistance in Various Environments, Advanced Engineering Materials, 8, 511 (2006). Doi: https://doi.org/10.1002/adem.200500257 

  7. Z. Wu, C. Richter, L. Menon, A Study of Anodization Process during Pore Formation in Nanoporous Alumina Templates, Journal of the Electrochemical Society, 154, E8 (2006). Doi: https://doi.org/10.1149/1.2382671 

  8. M.D. Havigh, B. Wouter, N. Hallemans, Operando odd random phase electrochemical impedance spectroscopy for in situ monitoring of the anodizing process, Electrochemistry Communications, 137, 107268 (2022). Doi: https://doi.org/10.1016/j.elecom.2022.107268 

  9. Z.B. Xie, S. Adams, D.J. Blackwood, J. Wang, The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells, Nanotechnology, 19, 405701 (2008). Doi: https://doi.org/10.1088/0957-4484/19/40/405701 

  10. G.L. Song, Z. Shi, Corrosion mechanism and evaluation of anodized magnesium alloys, Corrosion Science, 85, 126 (2014). Doi: https://doi.org/10.1016/j.corsci.2014.04.008 

  11. M. Mehdizade, M. Soltanieh, A.R. Eivani, Investigation of anodizing time and pulse voltage modes on the corrosion behavior of nanostructured anodic layer in commercial pure aluminum, Surface and Coatings Technology, 358, 741 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2018.08.046 

  12. S.H. Kim, C. Jeong, Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes, Materials, 14, 1089 (2021). Doi: https://doi.org/10.3390/ma14051089 

  13. H. Takakashi, M.Chiba, Role of Anodic Oxide Films in the Corrosion of Aluminum and its alloys, Corrosion Reviews, 36, 35 (2018). Doi: https://doi.org/10.1515/corrrev-2017-0048 

  14. W. F. Cui, L. Jin, L.Zhou, Surface Characteristics and Electrochemical Corrosion Behavior of a Pre-anodized Microarc Oxidation Coating on Titanium Alloy, Materials Science and Engineering: C, 33, 3775 (2013). Doi: https://doi.org/10.1016/j.msec.2013.05.011 

  15. C. Jeong, C. H. Choi, Single-Step Direct Fabrication of Pillar-on-Pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency. ACS Applied Materials & Interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n 

  16. J. Li, H. Wei, K. Zhao, M. Wang, D. Chen, M. Chen, Effect of Anodizing Temperature and Organic Acid Addition on the Structure and Corrosion Resistance of Anodic Aluminum Oxide Films, Thin Solid Films, 713, 138359 (2020). Doi: https://doi.org/10.1016/j.tsf.2020.138359 

  17. F. Li, L. Zhang, R. M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, Chemistry of Materials, 10, 2470 (1998). Doi: https://doi.org/10.1021/cm980163a 

  18. Y. Wang, W. wang, L. Zhong, J. Wang, Q. Jiang. X. Guo, Super-Hydrophobic Surface on Pure Magnesium Substrate by Wet Chemical Method, Applied Surface Science, 256, 3837 (2010). Doi: https://doi.org/10.1016/j.apsusc.2010.01.037 

  19. A. Milionis, E. Loth, I. S. Bayer, Recent Advances in the Mechanical Durability of Superhydrophobic Materials, Advances in colloid and interface science, 229, 57 (2016). Doi: https://doi.org/10.1016/j.cis.2015.12.007 

  20. X. Li, S. Yin, S. Huang, H. Luo, Q. Tang, Fabrication of durable superhydrophobic Mg alloy surface with water-repellent, temperature-resistant, and self-cleaning properties, Vacuum, 173, 109172 (2020). Doi: https://doi.org/10.1016/j.vacuum.2020.109172 

  21. L. Bouchama, N. Azzouz, N. Boukmouche, J. P. Chopart, A. L. Daltin, Y. Bouznit, Enhancing Aluminum Corrosion Resistance By Two-Step Anodizing Process, Surface and Coatings Technology, 25, 676 (2013). Doi: https://doi.org/10.1016/j.surfcoat.2013.08.046 

  22. H. A. Elkilany, M. A. Shoeib, O. E. Abdel-Salam, Influence of Hard Anodizing on the Mechanical and Corrosion Properties of Different Aluminum Alloys Metallography, Microstructure, and Analysis, 8, 861 (2019). Doi: https://doi.org/10.1007/s13632-019-00594-5 

  23. C. Jeong, H. Ji, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231 

  24. C. Crossland, G. E. Thompson, C. J. E. Smith, H. Habazaki, K. Shimizu, P. Skeldon, Formation of Manganese-rich Layers during Anodizing of Al-Mn Alloys, Corrosion science, 41, 2053 (1999). Doi: https://doi.org/10.1016/S0010-938X(99)00025-6 

  25. H. Voon, M. N. Derman, U. Hashim, K. L. Foo, T. Adam, Effect of Anodizing Voltage on the Morphology and Growth Kinetics of Porous Anodic Alumina on Al-0.5 wt% Mn Alloys, Advanced Materials Research, 832, 101 (2014). Doi: https://doi.org/10.4028/www.scientific.net/AMR.832.101 

  26. J. Chen, J. Xiao, J. Poplawsky, F. M. Michel, C. Deng, W. Cai, The Origin of Passivity in Aluminum-Manganese Solid Solutions, Corrosion Science, 173, 108749 (2020). Doi: https://doi.org/10.1016/j.corsci.2020.108749 

  27. C. H. Voon, M. N. Derman, Effect of Electrolyte Concentration on the Growth of Porous Anodic Aluminium Oxide (AAO) on Al-Mn Alloys, Advanced Materials Research, 626, 610 (2013). Doi: https://doi.org/10.4028/www.scientific.net/AMR.626.610 

  28. J. Thangthong, S. Prombanpong, An Analysis of Burn Defect in Hard Anodized Process of Al 3003, Advanced Materials Research, 1119, 475 (2015). Doi: https://doi.org/10.4028/www.scientific.net/AMR.1119.475 

  29. Y. Suzuki, K. Kawahara, T. Kikuchi, R. O. Suzuki, S. Natsui, Corrosion-resistant Porous Alumina Formed via Anodizing Aluminum in Etidronic Acid and its Pore-Sealing Behavior in Boiling Water, Journal of The Electrochemical Society, 166, C261 (2019). Doi: https://doi.org/10.1149/2.0221912jes 

  30. Y. Ma, X. Zhou, Y. Liao, X. Chen, C. Zhang, H. Wu, Z. Wang, W. Huang, Effect of Anodizing Parameters on Film Morphology and Corrosion Resistance of AA2099 Aluminum-Lithium Alloy, Journal of The Electrochemical Society, 163, C369 (2016). Doi: https://doi.org/10.1149/2.1081607jes 

  31. C. Jeong, Ph. D. Thesis, p132, Stevens Institute of Technology, New Jersey (2013). 

  32. A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, B. S. Putra, Corrosion Resistance Improvement of Aluminum under Anodizing Process, AIP Conference Proceedings, 1977, 020006 (2018). Doi: https://doi.org/10.1063/1.5042862 

  33. Y. Huang, H. Shih, H. Huang, J. Daugherty, S. Wu, S. Ramanathan, C. Chang, F. Mansfeld, Evaluation of the Corrosion Resistance of Anodized Aluminum 6061 using Electrochemical Impedance Spectroscopy (EIS), Corrosion Science, 50, 3569 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.09.008 

  34. L. Benea, N. Simionescu-Bogatu, R. Chiriac, Electrochemically Obtained Al 2 O 3 Nanoporouslayers with Increased Anticorrosive Properties of Aluminum Alloy, Journal of Materials Research and Technology, 17, 2636 (2022). Doi: https://doi.org/10.1016/j.jmrt.2022.02.038 

  35. A. Rattanasatitkul, S. Prombanpong, P. Tuengsook, An Effect of Process Parameters to Anodic Thickness in Hard Anodizing Process, Materials Science Forum, 872, 168 (2016). Doi: https://doi.org/10.4028/www.scientific.net/MSF.872.168 

  36. K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U. Gosele, Self-Ordered Anodic Aluminum Oxide Formed by H 2 SO 4 Hard Anodization, ACS nano, 2, 302 (2008). Doi: https://doi.org/10.1021/nn7001322 

  37. C. L. Ban, F. R. Wang, J. H. Chen, Z. Q. Liu, Effect of Hydration on Microstructure and Property of Anodized Oxide Film for Aluminum Electrolytic Capacitor. Journal of Materials Science: Materials in Electronics, 29, 16166 (2018). Doi: https://doi.org/10.1007/s10854-018-9705-9 

  38. J. Y. Kim, K. H. Lee, J. Sin, S. H. Park, J. S. Kang, K. S. Han, M. M. Sung, N. Pinna, Y. E. Sung, Highly Ordered and Vertically Oriented TiO2/Al2O3 Nanotube Electrodes for Application in Dye-Sensitized Solar Cells, 25, 504003 (2014). Doi: https://doi.org/10.1088/0957-4484/25/50/504003 

  39. A. Cassie and S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society, 40, 546 (1944). Doi: https://doi.org/10.1039/TF9444000546 

  40. H. Y. Erbil, C. E. Cansoy, Range of Applicability of the Wenzel and Cassie-Baxter Equations for Superhydrophobic Surfaces, Langmuir, 25, 14135 (2009). Doi: https://doi.org/10.1021/la902098a 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로