$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Titanium 양극산화시 TiO2 의 형상 및 특성에 미치는 전해질의 영향
Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium 원문보기

Corrosion science and technology, v.22 no.3, 2023년, pp.193 - 200  

최예지 (동의대학교 신소재공학과) ,  정찬영 (동의대학교 신소재공학과)

Abstract AI-Helper 아이콘AI-Helper

Titanium alloy (grade-4) is commonly used in industrial and medical applications. To improve its corrosion resistance and biocompatibility for medical use, it is necessary to form a titanium oxide film. In this study, the morphology of the oxide film formed by anodizing Ti-grade 4 using different el...

주제어

표/그림 (11)

참고문헌 (41)

  1. C. Yao and T. J. Webster, Anodization: A Promising Nano-Modification Technique of Titanium Implants for Orthopedic Applications, Journal of nanoscience and nanotechnology, 6, 2682 (2006). Doi: https://doi.org/10.1166/jnn.2006.447 

  2. F. R. Nowruzi, R. Imani, and S. Faghihi, Effect of Electrochemical Oxidation and Drug Loading on the Antibacterial Properties and Cell Biocompatibility of Titanium Substrates, Scientific Reports, 12, 1 (2022). Doi: https://doi.org/10.1038/s41598-022-12332-z 

  3. Q. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, The Effect of Electrolyte Composition on the Fabrication of Self-organized Titanium Oxide Nanotube Arrays by Anodic Oxidation, Journal of Materials Research, 20, 230 (2005). Doi: https://doi.org/10.1557/JMR.2005.0020 

  4. M. Kocabas, Effect of Surface Finish on the Colour Anodising of Ti-6Al-4V at Various Voltages, Transactions of the IMF, 101, 6 (2023). Doi: https://doi.org/10.1080/00202967.2022.2111121 

  5. C. C. Chen, W. D. Jehng, L. L. Li, and E. W. G. Diau, Enhanced Efficiency of Dye-Sensitized Solar Cells Using Anodic Titanium Oxide Nanotube Arrays, Journal of the Electrochemical Society, 156, C304 (2009). Doi: https://doi.org/10.1149/1.3153288 

  6. G. X. Xiang, S. Y. Li. H. Song, and Y. G. Nan, Fabrication of Modifier-free Superhydrophobic Surfaces with Anti-icing and Self-cleaning Properties on Ti Substrate by Anodization Method, Microelectronic Engineering, 233, 111430 (2020). Doi: https://doi.org/10.1016/j.mee.2020.111430 

  7. J. Zhao, X. Wang, R. Chen, and L. Li, Fabrication of Titanium Oxide Nanotube Arrays by Anodic Oxidation, Solid State Communications, 134, 705 (2005). Doi: https://doi.org/10.1016/j.ssc.2005.02.028 

  8. Y. Liu, Y. Zhang, L. Wang, G. Yang, F. Shen, S. Deng, X. Zhang, Y. He, Y. Hu, and X. Chen, Fast and Large-scale Anodizing Synthesis of Pine-cone TiO2 for Solar-driven Photocatalysis, Catalysts, 7, 229 (2017). Doi: https://doi.org/10.3390/catal7080229 

  9. Y. Park and C. Jeong, Surface Modification of Functional Titanium Oxide to Improve Corrosion Resistance, Corrosion Science and Technology, 20, 256 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.256 

  10. Y. Kim, J. Youk, and J. Choi, Inverse-direction Growth of TiO2 Microcones by Subsequent Anodization in HClO4 for Increased Performance of Lithium-Ion Batteries, ChemElectroChem, 7, 1248 (2020). Doi: https://doi.org/10.1002/celc.202000114 

  11. A. Bartkowiak, A. Zarzycki, S. Kac, M. Perzanowski, and M. Marszalek, Mechanical Properties of Different Nanopatterned TiO2 Substrates and their Effect on Hydrothermally Synthesized Bioactive Hydroxyapatite Coatings, Materials, 13, 5290 (2020). Doi: https://doi.org/10.3390/ma13225290 

  12. M. Izmir and B. Ercan, Anodization of Titanium Alloys for Orthopedic Applications, Frontiers of Chemical Science and Engineering, 13, 28 (2019). Doi: https://doi.org/10.1007/s11705-018-1759-y 

  13. J. Hlinka, K. Dostalova, K. Cabanoca, R. Madeja, K. Frydrysek, J. Koutecky, Z. Rybkova, K. Malachova, and O. Umezawa, Electrochemical, Biological, and Technological Properties of Anodized Titanium for Color Coded Implants, Materials, 16, 632 (2023). Doi: https://doi.org/10.3390/ma16020632 

  14. C. C. Chen, H. W. Chung, C. H. Chen, H. P. Lu, C. M. Lan, S. F. Chen, L. Luo, C. S. Hung, E. G. W. Diau, Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-sensitized Solar Cells, The Journal of Physical Chemistry C, 112, 19151 (2008). Doi: https://doi.org/10.1021/jp806281r 

  15. M. Michalska-Domanska, K. Prabucka, and M. Czerwinski, Modification of Anodic Titanium Oxide Bandgap Energy by Incorporation of Tungsten, Molybdenum, and Manganese In Situ during Anodization, Materials, 16, 2707 (2023). Doi: https://doi.org/10.3390/ma16072707 

  16. T. Guo, N. A. T. Oztug, P. Han S. Ivaniski, and K. Gulati, Old is gold: Electrolyte aging Influences the Topography, Chemistry, and Bioactivity of Anodized TiO2 Nanopores, ACS applied materials & interfaces, 13, 7897 (2021). Doi: https://doi.org/10.1021/acsami.0c19569 

  17. J. M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, and P. Schmuki, Self-organized Nanotubular Oxide Layers on Ti-6Al-7Nb and Ti-6Al-4V formed by Anodization in NH4F Solutions, Journal of Biomedical Materials Research Part A, 75, 928 (2005). Doi: https://doi.org/10.1002/jbm.a.30501 

  18. Y. Choi and C. Jeong, Growth Behavior and Corrosion Damage of Oxide Film According to Anodizing Time of Aluminum 1050 Alloy, Corrosion Science and Technology, 21, 282(2022). Doi: https://doi.org/10.14773/cst.2022.21.4.282 

  19. H. Kim, K. Kee, D. Lee, S. Park, and K. Lee, Surface Characteristics of Oxide Film Prepared on CP Ti and Ti-10Ta-10Nb Alloy by Anodizing, Korean Journal of Materials, 17, 6 (2007). Doi: https://doi.org/10.3740/MRSK.2007.17.1.006 

  20. W. Jeon and A. Han, Surface Modification of Ti-6Al-4V Alloy by Anodic Oxidation and Cyclic Precalcification Treatment. Korean Journal of Dental Materials 43, 1 (2016). Doi: https://doi.org/10.3390/ma12193231 

  21. L. Bouchama, Y. Bouznit, N. Boukmouche, and S. Irki, Two-step vs. Single-Step Electrochemical Anodizing Process Regarding Anti-Corrosion Properties of Titanium, Analytical and Bioanalytical Electrochemistry, 15, 264 (2023). Doi: https://doi.org/10.22034/ABEC.2023.704566 

  22. D. Gong, C. Grimes, O. Varghese, W. Hu, R. Singh, W. Chen, and E. Dickey, Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation, Journal of Materials Research, 16, 3331 (2001). Doi: https://doi.org/10.1557/JMR.2001.0457 

  23. S. Yoo and H. Park, Effect of Anodic Oxidation Process Parameters on TiO2 Nanotube Formation in Ti-6Al-4V Alloys, Korean Journal of Metals And Materials, 51, 521 (2019). Doi: https://doi.org/10.3365/KJMM.2019.57.8.521 

  24. J. Kim and C. Jeong, A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method, Corrosion Science and Technology, 21, 290 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.290 

  25. J. Choi, R. B. Wehspohn, J. Lee, and U. Gosele, Anodization of Nanoimprinted Titanium: A Comparison with Formation of Porous Alumina, Electrochimica Acta, 49, 2645 (2004). Doi: https://doi.org/10.1016/j.electacta.2004.02.015 

  26. Y. Kim and W. Kim, Enhancing the Surface Hydrophilicity of an Aluminum Alloy Using Two-Step Anodizing and the Effect on Inkjet Printing Characteristics, Coatings, 13, 232 (2023). Doi: https://doi.org/10.3390/coatings13020232 

  27. T. Kikuchi, O, Nishinaga, S. Natsui, and R. O. Suzuki, Fabrication of Self-ordered Porous Slumina via Etidronic Acid Anodizing and Structural Color Generation from Submicrometer-scale Dimple Array, Electrochimica Acta, 156, 235 (2015). Doi: https://doi.org/10.1016/j.electacta.2014.12.171 

  28. Y. K. Erdogan and B. Ercan, Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties, ACS Biomaterials Science & Engineering, 9, 693 (2023). Doi: https://doi.org/10.1021/acsbiomaterials.2c01072 

  29. A. B. Tesler, M. Altomare, and P. Schmuki, Morphology and Optical Properties of Highly Ordered TiO2 Nanotubes Grown in NH4F/O-H3PO4 Electrolytes in View of Light-harvesting and Catalytic Applications, ACS Applied Nano Materials, 3, 10646 (2020). Doi: https://doi.org/10.1021/acsanm.0c01859 

  30. F. Raffin, J. Echouard, and P. Volovitch, Influence of the Anodizing Time on the Microstructure and Immersion Stability of Tartaric-Sulfuric Acid Anodized Aluminum Alloys, Metals, 13, 993 (2023). Doi: https://doi.org/10.3390/met13050993 

  31. F. Martin, D. Del Frari, J. Cousty, and C. Bataillon. Selforganisation of Nanoscaled Pores in Anodic Oxide Overlayer on Stainless Steels, Electrochimica Acta, 54, 3086 (2009). Doi: https://doi.org/10.1016/j.electacta.2008.11.062 

  32. H. Ji and C. Jeong, Fabrication of Superhydrophobic Aluminum Alloy Surface with Hierarchical Pore Nanostructure for Anti-Corrosion, Corrosion Science and Technology, 18, 228 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.228 

  33. C. Jeong, A Study on functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395 

  34. C. Jeong, J. Jung, K. Sheppard, and C. H. Choi, Control of the Nanopore Architecture of Anodic Alumina via Stepwise Anodization with Voltage Modulation and Pore Widening, Nanomaterials, 13, 342 (2023). Doi: https://doi.org/10.3390/nano13020342 

  35. C. Jeong, J. Lee, K. Sheppard, and C. Choi, Air-impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392 

  36. H. Ji and C. Jeong, Study on Corrosion and Oxide Growth Behavior of Anodized Aluminum 5052 Alloy, Journal of the Korean institute of surface engineering, 51, 372 (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.6.372 

  37. J. Li, F. Du, X. Liu, Z. Jiang, and L. Ren, Superhydrophobicity of Bionic Alumina Surfaces Fabricated by Hard Anodizing, Journal of Bionic Engineering, 8, 369 (2011). Doi: https://doi.org/10.1016/S1672-6529(11)60042-5 

  38. H. Ji and C. Jeong, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231 

  39. J. Lee, S. Shin, Y. Jiang, C. Jeong, H. Stone, and C. Choi, Oil-impregnated Nanoporous Oxide Layer for Corrosion Protection with Self-healing, Advanced Functional Materials, 27, 1606040 (2017). Doi: https://doi.org/10.1002/adfm.201606040 

  40. C. Jeong and C. Choi, Jeong, Single-step Direct Fabrication of Pillar-on-pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency, ACS applied materials & interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n 

  41. R. Kim and C. Jeong, Anti-Icing Characteristics of Aluminum 6061 Alloys According to Surface Nanostructure, Corrosion Science and Technology, 21, 476(2022), Doi: https://doi.org/10.14773/cst.2022.21.6.476 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로