$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 알루미늄 1050 합금의 양극산화 시간에 따른 산화피막 성장 거동 및 부식 손상 연구
Growth Behavior and Corrosion Damage of Oxide Film According to Anodizing Time of Aluminum 1050 Alloy 원문보기

Corrosion science and technology, v.21 no.4, 2022년, pp.282 - 289  

최예지 (동의대학교신소재공학과) ,  정찬영 (동의대학교신소재공학과)

Abstract AI-Helper 아이콘AI-Helper

Aluminum 1000 series alloy, a pure aluminum with excellent workability and weldability, is mainly used in the ship field. Aluminum alloy can combine with oxygen in the atmosphere and form a natural oxide film with high corrosion resistance. However, its corrosion resistance and durability are decrea...

주제어

표/그림 (12)

참고문헌 (33)

  1. S. J. Lee, S. J. Kim, Essential Anti-Corrosive Behavior of Anodized Al Alloy by Applied Current Density, Applied Surface Science, 481, 637 (2019). Doi: https://doi.org/10.1016/j.apsusc.2019.03.155 

  2. C. Jeong, C. H. Choi, Single-Step Direct Fabrication of Pillar-on-Pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency. ACS Applied Materials & Interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n 

  3. H. Takahashi, M. Chiba, Role of Anodic Oxide Films in the Corrosion of Aluminum and its Alloys, Corrosion Reviews, 36, 35 (2018). Doi: https://doi.org/10.1515/corrrev-2017-0048 

  4. C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395 

  5. C. Jeong, J. Lee, K. Sheppard, C. H. Choi, Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392 

  6. V. Dumitrascum, L. Benea, E. Danaila, Corrosion Behavior of Aluminum Oxide Film Growth by Controlled Anodic Oxidation, IOP Conference Series: Materials Science and Engineering, 209, 012016 (2017). Doi: https://doi.org/10.1088/1757-899X/209/1/012016 

  7. S. H. Kim, C. Jeong, Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes, Materials, 14, 1089 (2021). Doi: https://doi.org/10.3390/ma14051089 

  8. A. M. Abd-Elnaiem, A. M. Mebed, A, Gaber, M. A. Abdel-Rahim, Effect of the Anodization Parameters on the Volume Expansion of Anodized Aluminum Films, Int. J. Electrochem. Sci, 8, 10515 (2013). Doi: http://www.electrochemsci.org/papers/vol8/80810515.pdf 

  9. L. Bouchama, N. Azzouz, N. Boukmouche, J. P. Chopart, A. L. Daltin, Y. Bouznit, Enhancing Aluminum Corrosion Resistance by Two-Step Anodizing Process, Surface and Coatings Technology, 235, 676 (2013). Doi: https://doi.org/10.1016/j.surfcoat.2013.08.046 

  10. A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, B. S. Putra, Corrosion Resistance Improvement of Aluminum under Anodizing Process, AIP Conference Proceedings, 1977, 020006 (2018). Doi: https://doi.org/10.1063/1.5042862 

  11. C. Jeong, Ph.D. Thesis, pp. 2 - 5, Stevens Institute of Technology, New Jersey (2013). 

  12. I. Tsangaraki-Kaplanoglou, S. Theohari, T. Dimogerontakis, Y. M. Wang, H.H. Kuo, S. Kia, Effect of Alloy Types on the Anodizing Process of Aluminum, Surface and Coatings Technology, 200, 2634 (2006). Doi: https://doi.org/10.1016/j.surfcoat.2005.07.065 

  13. Y. Ma, X. Zhou, Y. Liao, X. Chen, C. Zhang, H. Wu, Z. Wang, W. Huang, Effect of Anodizing Parameters on Film Morophology and Corrosion Resistance of AA2099 Aluminum- Lithium Alloy, Journal of the Electrochemical Society, 163, C36 (2016). Doi: https://doi.org/10.1149/2.1081607jes 

  14. L. Benea, N. Simionescu-Bogatu, R, Chiriac, Electrochemically Obtained Al2O3 Nanoporous Layers with Increased Anticorrosive Properties of Aluminum Alloy, Journal of Materials Research and Technology, 17, 2639 (2022). Doi: https://doi.org/10.1016/j.jmrt.2022.02.038 

  15. W. Lee, S. J. Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures, Chemial Reviews, 114, 7487 (2014). Doi: https://doi.org/10.1021/cr500002z 

  16. K. S. Choudhari, C. H. Choi, S. Chidangil, S. D. George, Recent Progress in the Fabrication and Optical Properties of Nanoporous Anodic Alumina, Nanomaterials, 12, 444 (2022). Doi: https://doi.org/10.3390/nano12030444 

  17. J. G. Buijnsters, R. Zhong, N. Tsyntsaru, J. P. Celis, Surface Wettability of Macroporous Anodized Aluminum Oxide, Acs Applied materials & Interfaces, 5, 3224 (2013). Doi: https://doi.org/10.1021/am4001425 

  18. Z. Szklarska-Smialowska, Pitting Corrosion of Aluminum, Corrosion Science, 41, 1743 (1999). Doi: https://doi.org/10.1016/S0010-938X(99)00012-8 

  19. R. T. Foley, Localized Corrosion of Aluminum Alloys- A Review, Corrosion, 42, 277 (1986). Doi: https://doi.org/10.5006/1.3584905 

  20. A. M. Abd-Elnaiem, A, Gaber, Parametric Study on the Anodization of Pure Aluminum Thin Film Used in Fabricating Nano-Pores Template, International Journal of Electrochemical Science, 8, 9741 (2013). Doi: http://www.electrochemsci.org/papers/vol8/80709741.pdf 

  21. S.K. Thamida, H. C. Chang, Nanoscale Pore Formation Dynamics during Aluminum Anodization, Chaos: An Interdisciplinary Journal of Nonlinear Science, 12, 240 (2022). Doi: https://doi.org/10.1063/1.1436499 

  22. C. Jeong, H. Ji, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231 

  23. F. Zhang, L. Zhao, H. Chen, S. Xu, D. G. Evans, X. Duan, Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films on Aluminum, Angewandte Chemie, 120, 2500 (2008). Doi: https://doi.org/10.1002/ange.200704694 

  24. J. A. Davies, B. Domeji, J. P. S. Pringle, F. Brown, The Migration of Metal and Oxygen during Anodic Film Formation, Jouranl of the Electrochemical Society, 112, 675 (1965). Doi: https://doi.org/10.1149/1.2423662 

  25. M. Mehdizade, M. Soltanieh, A. R. Eivani, Investigation of Anodizing time and Pulse Voltage Modes on the Corrosion Behavior of Nanostructured Anodic Layer in Commercial Pure Aluminum, Surface and Coatings Technology, 358, 741 (2019). Doi: https://doi.org/10.1016/j.surfcoat.2018.08.046 

  26. L. Zaraska, G. D. Sulka, J. Szeremeta, M. Jaskula, Porous Anodic Alumina Formed by Anodization of Aluminum Alloy(AA1050) and High Purity Aluminum, Electrochimica Acta, 55, 4377 (2010). Doi: https://doi.org/10.1016/j.electacta.2009.12.054 

  27. A. Aballe, M. Bethencourt, F. J. Botana, M. J. Cano, M. Marcos, Localized Alkaline Corrosion of Alloy AA5083 in neutral 3.5% NaCl Solution, Corrosion Science, 43, 1657 (2001). Doi: https://doi.org/10.1016/S0010-938X(00)00166-9 

  28. J. Oh, C. V. Thompson, The Role of Electric Field in Pore Formation during Aluminum Anodization, Electrochimica Acta, 56, 4044 (2011). Doi: https://doi.org/10.1016/j.electacta.2011.02.002 

  29. S. De Souza, D. S. Yoshikawa, W. A. S. lzaltino, S. L. Assis, I. Costa, Self-assembling Molecules as Corrosion Inhibitors for 1050 Aluminum, Surface and Coatings Technology, 204, 3238 (2010). Doi: https://doi.org/10.1016/j.surfcoat.2010.03.021 

  30. S. Wang, Y. Gu, Y. Geong, J. Liang, J. Zhao. J. Kang, Investigating Local Corrosion Behavior and Mechanism of MAO Coated 7075 Aluminum Alloy, Journal of Alloys and Compounds, 826, 153976 (2020). Doi: https://doi.org/10.1016/j.jallcom.2020.153976 

  31. R. Najjar, S. A. Katourani, M. G. Hosseini, Self-healing and Corrosion Protection performance of Organic Polysulfide @ Urea-formaldehyde Resin Core-shell Nanoparticles in Epoxy/PANI/ZnO Nanocomposite coatings on Anodized Aluminum Alloy, Progress in Organic Coatings, 124, 10 (2018). Doi: https://doi.org/10.1016/j.porgcoat.2018.08.015 

  32. J. Oh, C. V. Thompson, The Role of Electric Field in Pore Formation during Aluminum Anodization, Electrochimica Acta, 15, 4044 (2011). Doi: https://doi.org/10.1016/j.electacta.2011.02.002 

  33. B. Kasalica, J. Radic-Peric, M. Peric, M. Petkovic-Benazzouz, L. Belca, M. Sarvam, The Mechanism of Evolution of Microdischarges at the Beginning of the PEO Process on Aluminum, Surface and Coatings Technology, 298, 24 (2016). Doi: https://doi.org/10.1016/j.surfcoat.2016.04.044 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로