$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

PEMFC 금속 분리판용 316L 스테인리스강의 전기화학적 특성 및 손상 거동에 미치는 온도 및 염화물 농도의 영향
Effects of Temperature and Chloride Concentration on Electrochemical Characteristics and Damage Behavior of 316L Stainless Steel for PEMFC Metallic Bipolar Plate 원문보기

Corrosion science and technology, v.21 no.4, 2022년, pp.300 - 313  

신동호 (목포해양대학교대학원) ,  김성종 (목포해양대학교기관시스템공학부)

Abstract AI-Helper 아이콘AI-Helper

Interest in polymer electrolyte fuel cell is growing to replace fossil fuels. In particular, in order to reduce the cost and volume of the fuel cell, research on a metallic bipolar plate is being actively conducted. In this research, investigated the effects of temperature and chloride concentration...

주제어

표/그림 (13)

참고문헌 (33)

  1. B. C. H. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, 414, 345 (2001). Doi: https://doi.org/10.1142/9789814317665_0031 

  2. G. Hinds and E. Brightman, Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates, International Journal of Hydrogen Energy, 40, 2785 (2015). Doi: https://doi.org/10.1016/j.ijhydene.2014.12.085 

  3. H. Tawfik, Y. Hung, and D. Mahajan, Metal bipolar plates for PEM fuel cell-A review, Journal of Power Sources, 163, 755 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.088 

  4. S. M. Moon, S. Y. Lee, and D. Y. Kwon, Properties and coating technology of metallic bipolar plate for polymer electrolyte fuel cells, Journal of Surface Science Engineering, 55, 133 (2022). Doi: https://doi.org/10.5695/JSSE.2022.55.3.133 

  5. A. Hermann, T. Chaudhuri, and P. Spagnol, Bipolar plates for PEM fuel cells:A review, International Journal of Hydrogen Energy, 30, 1297 (2005). Doi: https://doi.org/10.1016/j.ijhydene.2005.04.016 

  6. K. M. Kim, J. H. Park, H. S. Kim, J. H. Kim, Y. Y. Lee, and K. Y. Kim, Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells, International Journal of Hydrogen Energy, 37, 8459 (2012). Doi: https://doi.org/10.1016/j.ijhydene.2012.02.127 

  7. H. McCrabb, E. J. Taylor, A. L. Morales, S. Shimpalee, M. Inman, and J. W. VanZee, Through-Mask Electroetching for Fabrication of Metal Bipolar Plate Gas Flow Field Channels, The Electrochemical Society, 33, 991 (2010). Doi: https://doi.org/10.1149/1.3484593 

  8. M. Sulek, J. Adams, S. Kaberline, M. Ricketts, and J. R. Valdecker, In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance, Journal of Power Sources, 196, 8967 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2011.01.086 

  9. C. Mele and B. Bozzine, Corrosion Performance of Austenitic Stainless Steel Bipolar Plates for Nafion- and Room-Temperature Ionic-Liquid-Based PEMFCs, The Open Fuels & Energy Science Journal, 11, 47 (2012). Doi: https://doi.org/10.2174/1876973X01205010047 

  10. N. D. L. Heras, E. P. L. Roberts, R. Langton, and D. R. Hodgson, A review of metal separator plate materials suitable for automotive PEM fuel cells, Royal Society of Chemistry, 2, 206 (2009). Doi: https://doi.org/10.1039/B813231N 

  11. Y. Yang, L. J. Guo, and H. Liu, Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities, International Journal of Hydrogen Energy, 36, 1654 (2011). Doi: https://doi.org/10.1016/j.ijhydene.2010.10.067 

  12. A. A. Hermas and M. S. Morad, A comparative study on the corrosion behaviour of 304 austenitic stainless steel in sulfamic and sulfuric acid solutions, Corrosion Science, 50, 2710 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.06.029 

  13. I. H. Oh and J. B. Lee, Corrosion Behavior of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate, Corrosion Science and Technology, 9, 129 (2010). 

  14. S. Feliu, M. Morcillo, and B. Chico, Effect of Distance from Sea on Atmospheric Corrosion Rate, Corrosion, 55, 883 (1999). 

  15. Y. G. You and J. H. Joo, Anti-corrosion Properties of CrN Thin Films Deposited by Inductively Coupled Plasma Assisted Sputter Sublimation for PEMFC Bipolar Plates, Journal of Surface Science Engineering, 46, 168 (2013). Doi: https://doi.org/10.5695/JKISE.2013.46.4.168 

  16. K. S. Eom, E. A. Cho, S. W. Nam, T. H. Lim, J. H. Jang, H. J. Kim, B. K. Hong, and Y. C. Yang, Degradation behavior of a polymer electrolyte membrane fuel cell employing metallic bipolar plates under reverse current condition, Electrochimica Acta, 78, 324 (2012). 

  17. D. A. Jones, Principles and prevention of corrosion, 2nd, pp. 156, 256, 257, Prentice Hall, New Jersey (1996). 

  18. P. B. Madakson, I. A. Malik, S. K. Laminu, and I. G. Bashir, Effect of Anodization on the corrosion behavior of Aluminium Alloy in HCl acid and NaOH, International Journal of Materials Engineering, 2, 38 (2012). Doi: https://doi.org/10.5923/j.ijme.20120204.02 

  19. S. K. Singh and A. K. Mukherjee, Kinetics of Mild Steel Corrosion in Aqueous Acetic Acid Solutions, Journal of Materials Science & Technology, 26, 264 (2010). Doi: https://doi.org/10.1016/S1005-0302(10)60044-8 

  20. H. S. Kwon, H. S. Kim, C. J. Park, and H. J. Jang, Comprehension of stainless steels, pp. 191, 213, 214, Steel & Metal News (2007). 

  21. W. Ye, Y. Li, and F. Wang, The improvement of the corrosion resistance of 309 stainless steel in the transpassive region by nano-crystallization, Electrochimica Acta, 54, 1339 (2009). Doi: https://doi.org/10.1016/j.electacta.2008.08.073 

  22. V. P. Forchhammer and H. J. Engell, Untersuchungen uber den Lochfraf3 an passiven austenitischen Chrom-Nickel-Stahlen in neutralen Chloridlosungen, Materials and Corrosion, 20, 1 (1969). Doi: https://doi.org/10.1002/maco.19690200103 

  23. G. Latha and S. Rajeswari, Pitting and Crevice Corrosion Behaviour of Superaustenitic Stainless Steels in Sea Water Cooling Systems, Corrosion Reviews, 18, 429 (2000). Doi: https://doi.org/10.1515/CORRREV.2000.18.6.429 

  24. D. H. Shin and S. J. Kim, Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC, Corrosion Science and Technology, 20, 435 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.435 

  25. A. A. Dastgerdi, A. Brenna, M. Ormellese, M. Pedeferri, and F. Bolzoni, Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel, Corrosion Science, 159, 108160 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.108160 

  26. Z. S. Smialowska, Pitting Corrosion of metals, pp. 24, National Association of Corrosion Engineers, 1440 South Creep Drive, Houston, Texas 77084, USA, (1986). 

  27. A. Garner, Thiosulfate Corrosion in Paper-Machine White Water, Corrosion, 41, 587 (1985). Doi: https://doi.org/10.5006/1.3582988 

  28. R. C. Newman, W. P. Wong, H. Ezuber, and A. Garner, Pitting of Stainless Steels by Thiosulfate Ions, Corrosion, 45, 282 (1989). Doi: https://doi.org/10.5006/1.3577855 

  29. I. Olefjord, B. Brox, and U. Jelestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, Journal of The Electrochemical Society, 132, 2854 (1985). Doi: https://doi.org/10.1149/1.2113683 

  30. ASTM G102-89, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, p. 3, ASTM International, West Conshohocken, PA, (2004). 

  31. ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, p. 7, ASTM International, West Conshohocken, PA (2004). 

  32. I. J. Jang, K. T. Kim, Y. R. Yoo, and Y. S. Kim, Effects of Ultrasonic Amplitude on Electrochemical Properties During Cavitation of Carbon Steel in 3.5% NaCl Solution, Corrosion Science and Technology, 19, 163 (2020). Doi: https://doi.org/10.14773/cst.2020.19.4.163 

  33. H. K. Hwang and S. J. Kim, Effect of Temperature on Electrochemical Characteristics of Stainless Steel in Green Death Solution Using Cyclic Potentiodynamic Polarization Test, Corrosion Science and Technology, 20, 266 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.266 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로