$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Markov Envelope를 이용한 지진동의 위상차 확률분포와 전파지연시간의 추정
Inference of the Probability Distribution of Phase Difference and the Path Duration of Ground Motion from Markov Envelope 원문보기

한국지진공학회논문집 = Journal of the Earthquake Engineering Society of Korea, v.26 no.5, 2022년, pp.191 - 202  

최항 ((주)아이맥스트럭처) ,  윤병익 ((주)아이맥스트럭처)

Abstract AI-Helper 아이콘AI-Helper

Markov envelope as a theoretical solution of the parabolic wave equation with Markov approximation for the von Kármán type random medium is studied and approximated with the convolution of two probability density functions (pdf) of normal and gamma distributions considering the previou...

주제어

참고문헌 (45)

  1. Park S, Hong TK, Rah G. Seismic hazard assessment for the Korean peninsula. Bull. Seismol. Soc. Am. 2021;111(5):2696-2719. DOI:10.1785/0120200261. 

  2. Campbell K. Near-source attenuation of peak hrizontal acceleration. Bull. Seismol. Soc. Am. 1981 Dec;71(6):2039-2070. 

  3. Yenier E. Regionally-adjustable generic ground-motion prediction equation. Electronic Thesis and Dissertation Repository. 2684. Univ. Western Ontario. c2015. 

  4. Si H, Midorikawa S. New attenuation relationships for peak ground acceleration and velocity considering effects of fault type and site condition. J. Struct. Constr. Eng. AIJ. 1999 Sep;523:63-70 (in Japanese with English abstract). 

  5. Kanno T, Narita A, Midorikawa N, Fujiwara H, Fukushima Y. A new attenuation relation for strong ground motion in Japan based on recored data. Bul. Seismol. Soc. Am. 2006 Jun;96(3):879-897. 

  6. Morozov IB. Geometrical attenuation, frequency dependence of Q, and the absorption band problem. Geophys. J. Int. 2008;175:239-252. 

  7. Si H, Midorikawa S, Kishida T. Developement of NGA-Sub ground motion model of 5%-damped pseudo-spectral acceleration based on database for subduction earthquakes in Japan. PEER 2020/06. Available from http://peer.berkeley.edu/sites/default/files/2020_06_si_final.pdf (last accessed March 2021). 

  8. Miyazawa M, Kiuchi R, Koketsu K. Attenuation characteristics of high-frequency ground motions from local sources caused by great subduction zone earthquakes in northeast Japan. Seismol. Res. Lett. c2022. DOI:10.1785/0220210353. 

  9. Ishimaru A. Wave propagation and scattering in random media Vol. 1 & 2. Academic Press; c1978. 

  10. Sato H, Fehler MC, Maeda T. Seismic wave propagation and scattering in the heterogeneous earth: 2nd Ed. Springer; c2012. 

  11. Boashash B. Estimating and interpreting the instantaneous frequency of a signal -Part 1: Fundamentals. Proc. IEEE. 1992 Apr;80(4):520-538. 

  12. Choi H, Yoon BI. Relationship between phase properties, significant duration and PGA from the earthquake records of Mw 5.5-6.5. EESK J. Earthquake Eng. 2019;23(1):55-70 (in Korean with English abstract). 

  13. Stockwell RG. A basis for efficient representation of the S-transform. Digital Signal Processing. 2007;17:371-393. 

  14. Papoulis A. The Fourier integral and its applications. McGraw-Hill; c1962. 

  15. Parzen E. Stochastic processes. SIAM; c1999. 

  16. Hoshiba M. Simulation of multiple-scattered coda wave excitation based on the energy conservation law. Phys. Earth and Planetary Interiors. 1991;67:123-136. 

  17. Hoshiba M, Sato H, Fehler M. Numerical basis of the separation of scattering and intrinsic absorption from full seismogram envelope - a Monte Carlo Simulation of multiple isotropic scattering. Meteorology and Geophys. 1991 Jul;42(2):65-91. 

  18. Zeng Y, Su F, Aki K. Scattering wave energy propagation in a random isotropic scattering medium 1. Theory. J. Geophys. Res. 1991 Jan:96(B1):607-619. 

  19. Yoshimoto K. Monte Carlo simulation of seismogram envelopes in scattering media. J. Geophy. Res. 2000 Mar:105(B3):6153-6161. 

  20. Saragoni R, Hart GC. Simulation of artificial earthquakes. Earthquake Eng. Struct. Dyn. 1974;2:249-267. 

  21. Zeng Y. Modeling of high-frequency seismic-wave scattering and propagation using Radiative Transfer Theory. Bull. Seismol. Soc. Am. 2017 Dec;107(6):2948-2962. 

  22. Lambert HC, Rickett BJ. On the theory of pulse propagation and two-frequency field statistics in irregular interstella plasmas. Astrophys. J. 1999 May;517:299-317. 

  23. Uscinski B. The elements of wave propagation in random media. McGraw-Hill; c1977. 

  24. Sato H. Envelope broadening and scattering attenuation of a scalar wavelet in random media having power-law spectra. Geophys. J. Int. 2016;204:386-398. 

  25. Sato H. Power spectra of random heterogeneities in the solid earth. Solid Earth. 2019;10:275-292. 

  26. Boore DM, Stewart JP, Seyhan E, Atkinson GM. NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra. 2014 Aug;30(3):1057-1085. 

  27. Yamane T, Nagahashi S. A study on a generation of simulated earthquake ground motion considering phase difference characteristics -Part 2. J. Struct. Constr. Eng. AIJ. 2002;559:55-62 (in Japanese with English abstract). 

  28. Emoto K, Sato H. Statistical characteristics of scattered waves in three-dimensional random media: comparison of the finite difference simulation and statistical methods. Geophys. J. Int. 2018;215:585-599. 

  29. Bechhoefer J. Kramers-Kronig, Bode, and the meaning of zero. Am. J. Phys. 2011;79(10):1053-1059. 

  30. Petukhin AG, Gusev AA. The duration-distance relationship and average envelope shapes of small Kamchatka earthquakes. Pure Appl. Geophys. 2003;160:1717-1743. 

  31. Choi H, Yoon BI. Extended slip-weakening model and inference of rupture velocity. EESK J. Earthquake Eng. 2020;24(5):219-232 (in Korean with English abstract). 

  32. Boore DM, Thompson EM. Path duration for use in the Stochastic-Method Simulation of ground motions. Bull. Seismol. Soc. Am. 2014;104(5):2541-2552. 

  33. Thrainsson H, Kiremidjian AS, Simulation of digital earthquake accelerograms using the inverse discrete Fourier transfrom. Earthquake Engng Struct. Dyn. 2002;31:2023-2048. 

  34. Boore DM. Phase derivatives and simulation of strong ground motions. Bull. Seismol. Soc. Am. 2003;93(3):1132-1143. 

  35. Aki K, Richards PG. Quantitative seismology 2nd Ed. University Science Books; c2002. 

  36. Ohnaka M. The physics of rock failure and earthquakes. Cambridge Univ. Press; c2013. 

  37. Frankel A, Wennenberg L. Energy-flux model of seismic coda: Separation of scattering and intrinsic attenuation. Bull. Seismol. Soc. Am. 1987 Aug;77(4):1223-1251. 

  38. Aki K, Chouet B. Origin of coda waves: Source, attenuation, and scattering effects. J. Geophys. Res. 1975 Aug;80(23):3322-3342. 

  39. Aki K. Scattering and attenuation of shear waves in the lithosphere. J. Geophys. Res. 1980;85(B11):6496-6504. 

  40. Del Pezzo E, Bianco F, Marzorati S, Augliera P, D'Alema E, Massa M. Depth-dependent intrinsic and scattering seismic attenuation in north central Italy. Geophys. J. Int. 2011;186:373-381. 

  41. Chung RW, Sato H, Attenuation of high-frequency P and S waves in the crust of southeastern South Korea. Bull. Seismol. Soc. Am. 2001;91(6):1867-1874. 

  42. Kim KD, Chung TW, Kyung JB. Attenuation of P and S waves in the crust of Chungchung provinces, central South Korea. Bull. Seismol. Soc. Am. 2004;94(3):1070-1078. 

  43. Chung TW, Yoshimoto K, Yun S. The separation of intrinsic and scattering seismic attenuation in South Korea. Bull. Seismol. Soc. Am. 2010;100(6):3183-3193. 

  44. Rachman AN, Chung TW, Yoshimoto K, Son B. Separation of intrinsic and scattering attenuation using single event source in South Korea. Bull. Seismol. Soc. Am. 2015;105(2A):858-872. 

  45. Rachman AN, Chung TW. Depth-dependent crustal scattering attenuation revealed using single or few events in South Korea. Bull. Seismol. Soc. Am. 2016;106(4):1499-1508. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로