$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

전기비저항 및 유도분극 탐사에 의한 저수지 누수지수 산출
Quantitative Evaluation of Leak Index from Electrical Resistivity and Induced Polarization Surveys in Embankment Dams 원문보기

지구물리와 물리탐사 = Geophysics and geophysical exploration, v.25 no.3, 2022년, pp.120 - 128  

조인기 (강원대학교 지질지구물리학부) ,  김연정 (강원대학교 대학원 지구물리학과) ,  송성호 (한국농어촌공사 농어촌기술연구원)

초록
AI-Helper 아이콘AI-Helper

국내에는 17,000여개의 저수지가 존재하며, 이중 85% 이상은 50년 이상 경과된 노후 저수지이다. 이들 저수지는 내부침식 및 세굴 현상에 의한 누수와, 그에 따른 붕괴의 위험에 직면하고 있다. 이들 저수지 및 댐의 붕괴를 방지하기 위해서는 누수를 조기에 파악하고 대비하는 것이 중요하다. 전기비저항 탐사는 저수지의 전반적인 상태 파악은 물론 누수의 발달여부 탐지가 가능한 비파괴, 실시간, 현장조사법이다. 이러한 장점 때문에 전기비저항 탐사법은 저수지 안전진단에 널리 사용되고 있다. 그러나 전기비저항 탐사법은 저수지의 안전도에 대한 정량적인 지수를 제공하지 못해 공식적으로 저수지 정밀 안전진단의 상태평가 항목에 포함되어 있지 못하다. 이 연구에서는 전기비저항 탐사와 유도분극 탐사를 통하여 계산된 수분함량에 근거한 정량적 누수지수 산출법을 제시하였다. 특히 일회성 탐사와 모니터링에 의한 정량적 누수지수 산출법을 개발하여 전기비저항 탐사와 유도분극 탐사가 향후 저수지 정밀 안전진단의 상태평가 항목으로 진입할 수 있는 이론적 기반을 제시하였다.

Abstract AI-Helper 아이콘AI-Helper

There are 17,000 reservoir dams in Korea, of which more than 85% were built over 50 years ago. Old embankment dams are weakened by internal erosion and suffusion phenomena due to preferential leakage paths and this ongoing weakening can cause their failure. Therefore, early warning associated with l...

주제어

참고문헌 (54)

  1. Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME, 146, 54-62. https://doi.org/10.2118/942054-G 

  2. Abdulsamad, F., Revil, A., Soueid Ahmed, A., Coperey, A., Karaoulis, M., Nicaise, S., and Peyras, L., 2019, Induced polarization tomography applied to the detection and the monitoring of leaks in embankments, Eng. Geol., 254, 89-101, https://doi.org/10.1016/j.enggeo.2019.04.001 

  3. Cassiani, G., Bruno, V., Villa, A., Fusi, N., and Binley, A. M., 2006, A saline trace test monitored via time-lapse surface electrical resistivity tomography, J. Appl. Geophys., 59, 244-259. https://doi.org/10.1016/j.jappgeo.2005.10.007 

  4. Cho, I. K., Kang, H. J., Lee, B. H., Kim, B. H., Yi, S. S., Park, Y. G., and Lee, B. H., 2006, Safety index evaluation from resistivity monitoring data for a reservoir dyke, Geophys. Geophys. Explor., 9(2), 155-162. https://koreascience.kr/article/JAKO200634515053340.page 

  5. Cho, I. K., and Yong, H. H., 2019, 3D resistivity survey for dam safety inspection, Geophys. and Geophys. Explor., 22(3), 99-106. https://doi.org/10.7582/GGE.2019.22.3.099 

  6. Cho, I. K., and Kim, Y. J., 2021, Nonlinear inversion of time-domain induced polarization data including negative apparent chargeability data, Geophys. and Geophys. Explor., 24(4), 139-148. https://doi.org/10.7582/GGE.2021.24.4.139 

  7. Cho, I. K., Ha, I. K., Kim, K. S., Ahn, H. Y., Lee, S., and Kang, H. J., 2013, 3D effects on 2D resistivity monitoring in earth-fill dams, Near Surf. Geophys., 12, 73-81. https://doi.org/10.3997/1873-0604.2013065 

  8. Cho, I. K., and Jeong, D. B., 2022, 4D inversion of resistivity monitoring data with adaptive time domain regularization, J. Appl. Geophys., 198, 104559, https://doi.org/10.1016/j.jappgeo.2022.104559 

  9. Cho, I. K., Lee, K. S., and Kang, H. J., 2010, 3D Effect of embankment dam geometry to resistivity Data, Geophys. and Geophys. Explor., 13, 397-406. https://koreascience.kr/article/JAKO201013354299552.page 

  10. Cho, I. K., and Yeom, J. Y., 2007, Crossline resistivity tomography for the delineation of anomalous seepage pathways in an embankment dam, Geophysics, 72, G31-G38. https://doi.org/10.1190/1.2435200 

  11. Dahlin, T., Bernstone, C., and Loke, M. H., 2002, A 3-D resistivity investigation of a contaminated site at Lernacken, Sweden, Geophysics, 67, 1692-1700. https://doi.org/10.1190/1.1527070 

  12. Day-Lewis, F. D., Harris, J. M., and Gorelick, S. M., 2002, Time-lapse inversion of crosswell radar data, Geophysics, 67, 1740-1752. doi:10.1190/1.1527075 

  13. Doetsch, J., Fiandaca, G., Auken, E., Christiansen, A. V., Cahill, A. G., and Jakobsen, R., 2015, Field-scale time-domain spectral induced polarization monitoring of geochemical changes induced by injected CO2 in a shallow aquifer, Geophysics, 80(2), WA113-WA126, doi:10.1190/geo2014-0315.1 

  14. Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., and Christiansen, A. V., 2012, Mapping of landfills using time-domain spectral induced polarization data: the Eskelund case study, Near Surf. Geophys., 10, 575-586. https://doi.org/10.3997/1873-0604.2012046 

  15. Hayley, K., Bentley, L. R., and Pidlisecky, A., 2010, Compensating for temperature variations in time-lapse electrical resistivity difference imaging, Geophysics, 75(4), WA51-WA59. https://doi.org/10.1190/1.3478208 

  16. Hong, B. M., 2004, Problems and improvement plan of agricultural reservoir construction, J. Korea Water Resour. Asso., 37(4), 29-33. 

  17. Johansson, S., and Dahlin, T., 1996, Seepage monitoring in an earth embankment dam by repeated resistivity measurements, European J. Engin. Environ. Geophys., 1, 229-247. https://www.researchgate.net/publication/271190903_Seepage_monitoring_in_an_earth_embankment_dam_by_repeated_resistivity_measurements 

  18. Karaoulis, M., Kim, J. H., and Tsourlos, P. I., 2011, 4D active time constrained inversion, J. Appl. Geophys., 73, 25-34. https://doi.org/10.1016/j.jappgeo.2010.11.002 

  19. Karaoulis, M., Revil, A., Werkema, D. D., Minsley, B. J., Woodruff, W. F., and Kemna, A., 2011, Time-lapse three-dimensional inversion of complex conductivity data using an active time constrained (ATC) approach, Geophys. J. Int., 187, 237-251, doi:10.1111/j.1365-246X.2011.05156.x 

  20. Karaoulis, M., Revil, A., Werkema, D. D., Tsourlos, P., and Minsley, B. J., 2013, IP4DI: a software for time-lapse 2D/3D DC-resistivity and induced polarization tomography, Comput. Geosci., 54, 164-170. https://doi.org/10.1016/j.cageo.2013.01.008 

  21. Karaoulis, M., Tsourlos, P.I., Kim, J. H., and Revil, A., 2014, 4D time-lapse ERT inversion: introducing combined time and space constraints, Near Surf. Geophys., 12, 25-34. https://doi.org/10.3997/1873-0604.2013004 

  22. Kemna, A., Vanderborght, J., Kulessa, B., and Vereecken, H., 2002, Imaging and characterization of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, J. Hydrol., 267, 125-146. doi:10.1016/S0022-1694(02)00145-2 

  23. Kim, D. H., Jang T. I., Hwang, S. W., and Cho, J. P., 2019, Assessing hydrologic impacts of climate change in the Mankyung watershed with different GCM spatial downscaling methods, JKSAE, 61(6), 81-92, h ttps://doi.org/10.5389/KSAE.2019.61.6.081 

  24. Kim, J. H., Yi, M. J., Park, S .G., and Kim, J. G., 2009, 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model, J. Appl. Geophys., 68, 522-532. https://doi.org/10.1016/j.jappgeo.2009.03.002 

  25. Kim, J. H., Supper, R., Tsourlos, P., and Yi, M. J., 2013, Four-dimensional inversion of resistivity monitoring data through Lp norm minimizations, Geophys. J. Int., 195, 1640-1656. doi:10.1093/gji/ggt324 

  26. Kim, K. J., and Cho, I. K., 2011, Time-lapse inversion of 2D resistivity monitoring data with a spatially varying cross-model constraint, J. Appl. Geophys., 74, 114-122. https://doi.org/10.1016/j.jappgeo.2011.04.010 

  27. Kim, M., Lee, C. Hwang, S. Ham, J., and Choi, J., 2021, A study on the minimization of expected casualty caused by the collape of reservoir, J. Korean Geograph. Soc., 56(3), 277-287, https://doi.org/10.22776/kgs.2021.56.3.277 

  28. KRC (Korea Rural Community Corporation), 2014, The Improvement of Assessment Criteria and Techniques of Safety Inspection for Agricultural Infrastructures, Research report, No. 11-5143000-000717-01. 

  29. KRC (Korea Rural Community Corporation), 2020, Statistical yearbook of land and water development for agriculture, Report No. 11-138000-0000140-10 

  30. LaBrecque, D. J., and Yang, X., 2001, Difference inversion of ERT data: a fast inversion method for 3D in situ monitoring, J. Environ. Eng. Geophys., 6, 83-90. https://doi.org/10.4133/JEEG6.2.83 

  31. Loke, M. H., 1999, Time lapse resistivity imaging inversion, in Proceedings of the 5th Meeting of the Environmental and Engineering Society European Section, Em1, September 6-9, 1999, Budapest, Hungary. doi: https://doi.org/10.3997/2214-4609.201406397 

  32. Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., and Wilkinson, P. B., 2013, Recent developments in the direct-current geoelectrical imaging method, J. Appl. Geophys., 95, 135-156. https://doi.org/10.1016/j.jappgeo.2013.02.017 

  33. Loke, M. H., Dahkn, T., and Rucker, D. E., 2014, Smoothness constrained time-lapse inversion of data from 3D resistivity survey, Near Surf. Geophys., 12, 5-24. doi: https://doi.org/10.3997/1873-0604.2013025 

  34. Miller, C. R., Routh, P. S., Brosten, T. R., and McNamara, J. P., 2008, Application of time-lapse ERT imaging to watershed characterization, Geophysics, 73, G7-G17. https://doi.org/10.1190/1.2907156 

  35. Oh, S. and Sun, C. G., 2008, Combined analysis of electrical resistivity and geotechnical SPT blow counts for the safety assessment of fill dam, Environ. Geol., 54(1), 31-42. https://link.springer.com/article/10.1007/s00254-007-0790-y 

  36. Oh, S. G., Lee, J. Y., Jung, J. W., Song J. T., You, S. Y., and Lee J. C., 2020, Water quality characteristic for agricultural reservoirs in Yeongsan River Basin, J. of the Korean Soc. for Environ, Tech., 21(1), 15-23. https://doi.org/10.1190/1.2734365 

  37. Oldenborger, G. A., Knoll, M. D., Routh, P. S., and LaBrecque, D. J., 2007, Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer, Geophysics, 72, F177-F188. 

  38. Oldenburg, D. W., and Li., Y., 1994, Inversion of induced polarization data, Geophysics, 59, 1327-1341. https://doi.org/10.1190/1.1443692 

  39. Panthulu, T. V., Krishnaiah, C., and Shirke, J. M., 2001, Detection of seepage path in earth dams using self-potential and electrical resistivity methods, Eng. Geol., 59, 281-295. https://doi.org/10.1016/S0013-7952(00)00082-X 

  40. Park, J. Y., Joh, H. K., Lee, J. H., Kang, B. S., Yoon, C. J., and Kim, S. J., 2010, Suggestion of simple method for downstream damage evaluation by small dam break using GIS technique, Proceedings of the 2010 KSAE Annual Conference. 

  41. Park, S. G., Kim, J. H., and Seo, G. W., 2005, Application of electrical resistivity monitoring technique to maintenance of embankments, Geophys. and Geophys. Explor., 8(2), 177-183. https://koreascience.kr/article/JAKO200507921815395.page 

  42. Revil, A., Coperey, A., Shao, Z., Florsch, N., Fabricius, I. L., Deng, Y., Delsman, J. R., Pauw, P. S., Karaoulis, M., de Louw, P. G. B., van Baaren E. S., Dabekaussen, W., Menkovic, A., and Gunnink, J. L., 2017a, Complex conductivity of soils, Water Resour. Res., 53, 7121-7147, doi:10.1002/2017WR020655 

  43. Revil, A., Eppehimer, J. D., Skold, M., Karaoulis, M., Godinez, L., and Prasad, M., 2013, Low-frequency complex conductivity of sandy and clayey materials, J. Coloid Interface Sci., 398, 193-209, http://dx.doi.org/10.1016/j.jcis.2013.01.015 

  44. Revil, A., Kessouri, P., and Torres-Verdin, C., 2014. Electrical conductivity, induced polarization, and permeability of the Fontainebleau sandstone, Geophysics, 79(5), D301-D318. https://doi.org/10.1190/geo2014-0036.1 

  45. Revil, A., Le Breton, M., Niu, Q., Wallin, E., Haskins, E., and Thomas, D. M., 2017b, Induced polarization of volcanic rocks. 1: Surface versus quadrature conductivity, Geophys. J. Int., 208, 826-844, doi:10.1093/gji/ggw444 

  46. Revil, A., Le Breton, M., Niu, Q., Wallin, E., Haskins, E., and Thomas, D. M., 2017c, Induced polarization of volcanic rocks. 2: Influence of pore size and permeability, Geophys. J. Int., 208, 814-825, doi:10.1093/gji/ggw382 

  47. Shin E. C., and Lee, J. K., 2012, Safety management improving of small agricultural reservoir, J. Korean Geosynth. Soc., 11(3), 53-58. https://doi.org/10.12814/jkgss.2012.11.3.053 

  48. Sjodahl, P., Dahlin, T., and Zhou, B., 2006, 2.5D resistivity modeling of embankment dams to assess influence from geometry and material properties, Geophysics, 71, G107-G114. 

  49. Seigel, H., Nabighian, M., Parasnis, D. S., and Vozoff, K., 2007, The early history of the induced polarization method, Lead. Edge, 26(3), 312-321. https://library.seg.org/doi/abs/10.1190/1.2715054 

  50. Song, S. H., Song, Y. H., and Kwon, B. D., 2005, Application of hydrogeological and geophysical methods to delineate leakage pathways in an earth fill dam, Explor. Geophys., 36, 73-77. https://doi.org/10.1071/EG05092 

  51. Song, S. H., Yong, H. H., Lee, G. S., and Cho, I. K., 2019, Safety analysis of reservoir dikes in South Korea through the interpretation of the electrical resistivity data considering three-dimensional structure, Geophys. and Geophys. Explor., 22(3), 160-167. https://doi.org/10.7582/GGE.2019.22.3.160 

  52. Song, Y. K., Kim, Y. U., Kim K., and Lee, K. S., 2016, Countermeasure on safety management of decrepit reservoir based on the comparative analysis for its collapse accidents, Crisisonomy, 12(7), 15-23. https://scholar.kyobobook.co.kr/article/detail/4010024946628 

  53. Soueid Ahmed, A., Revil, A., Abdulsamad, F., Steck, B., Vergniault, C., and Guihard, V., 2020, Induced polarization as a tool to non-intrusively characterize embankment hydraulic properties, Eng. Geol., 271, 105604, h ttps://doi.org/10.1016/j.enggeo.2020.105604 

  54. Zarif, F., Kessouri, P., and Slater, L., 2017, Recommendations for field-scale induced polarization (IP) data acquisition and interpretation, J. Envion. Eng. Geophys., 22(4), 395-410. https://doi.org/10.2113/JEEG22.4.39 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로