$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수질자료의 특성을 고려한 앙상블 머신러닝 모형 구축 및 설명가능한 인공지능을 이용한 모형결과 해석에 대한 연구
Development of ensemble machine learning model considering the characteristics of input variables and the interpretation of model performance using explainable artificial intelligence 원문보기

上下水道學會誌 = Journal of Korean Society of Water and Wastewater, v.36 no.4, 2022년, pp.239 - 248  

박정수 (국립한밭대학교 건설환경공학과)

Abstract AI-Helper 아이콘AI-Helper

The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In th...

주제어

참고문헌 (31)

  1. Ahmad, A., and Dey, L. (2007). A k-mean clustering algorithm for mixed numeric and categorical data, Data Knowl. Eng., 63, 503-527. 

  2. Bennett, N.D., Croke, B.F., Guariso, G., Guillaume, J.H., Hamilton, S.H., Jakeman, A.J., Marsili-Libelli, S., Newham, L.T., Norton, J.P. and Perrin, C. (2013). Characterising performance of environmental models, Environ. Modell. Softw., 40, 1-20. 

  3. Chen, T. and Guestrin, C. (2016). "Xgboost: A scalable tree boosting system", In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17 August, San Francisco, CA, USA. Association for computing Machinery. 

  4. Dietterich, T.G. (2000). Ensemble methods in machine learning, In international workshop on multiple classifier systems, June, Berlin, Heidelberg. 1-15. 

  5. Ekmekcioglu, O., Koc, K., Ozger, M., and Isik, Z. (2022). Exploring the additional value of class imbalance distributions on interpretable flash flood susceptibility prediction in the Black Warrior River basin, Alabama, United States, J. Hydrol., 610, 127877. 

  6. Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine, Ann. Stat., 1189-1232. 

  7. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.-Z., 2019. XAI-explainable artificial intelligence, Sci. Robot. 4(37). 

  8. Hollister, J.W., Milstead, W.B. and Kreakie, B.J. (2016). Modeling lake trophic state: A random forest approach, Ecosphere, 7, e01321. 

  9. KMA Korea Meteorological Administration, open met data portal, https://www.data.kma.go.kr/ (April 1, 2022). 

  10. Kwak, J. (2021). A study on the 3-month prior prediction of Chl-a concentraion in the Daechong lake using hydrometeorological forecasting data, J. Wetl. Res., 23(2), 144-153. 

  11. K-water Mywater https://www.water.or.kr/ (June 1, 2022). 

  12. Kwon, Y.S., Baek, S.H., Lim, Y.K., Pyo, J., Ligaray, M., Park, Y. and Cho, K.H. (2018). Monitoring coastal chlorophyll-a concentrations in coastal areas using machine learning models, Water 10(8), 1020. 

  13. Liu, M., and Lu, J. (2014). Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?, Environ. Sci. Pollut. R., 21, 11036-11053. 

  14. Lundberg, S.M., Erion, G.G., and Lee, S.I. (2018). Consistent individualized feature attribution for tree ensembles, https://arxiv.org/abs/1802.03888 

  15. Lundberg, S.M. and Lee, S.I. (2017). "A unified approach to interpreting model predictions", Proceedings of the 31st International Conference on Neural Information Processing Systems, 4768-4777. 

  16. Ma, X., Sha, J., Wang, D., Yu, Y., Yang, Q. and Niu, X. (2018). Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning, Electron Commer. Res. Appl., 31, 24-39. 

  17. Mangalathu, S., Hwang, S.H., and Jeon, J.S. (2020). Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach, Eng. Struct., 219, 110927. 

  18. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Am. Soc. Agric. Biol. Eng., 50, 885-900. 

  19. NIER National Institute of Environmental Research, realtime water information system http://www.koreawqi.go.kr/index_web.jsp (April 1, 2022). 

  20. Park, J. (2021). The effect of input variables clustering on the characteristics of ensemble machine learning model for water quality prediction, J Korean Soc. Wat. Environ., 37(5), 335-343. 

  21. Park, J., Lee, W.H., Kim, K.T., Park, C.Y., Lee, S. and Heo, T.Y. (2022). Interpretation of ensemble learning to predict water quality using explainable artificial intelligence, Sci. Total Environ., 832, 155070. 

  22. Park, J., Park, J.H., Choi, J.S., Joo, J.C., Park, K., Yoon, H.C., Park, C.Y., Lee, W.H., and Heo, T.Y. (2020). Ensemble Model Development for the Prediction of a Disaster Index in Water Treatment Systems, Water, 12, 3195. 

  23. Park, Y., Cho, K.H., Park, J., Cha, S.M. and Kim, J.H. (2015). Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Sci. Total Environ., 502, 31-41. 

  24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R. and Dubourg, V. (2011). Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825-2830. 

  25. Ribeiro, M.T., Singh, S., Guestrin, C., 2016. "Why should I trust you?" explaining the predictions of any classifier, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery And Data Mining, 1135-1144. 

  26. Shin, C.M., Min, J.H., Park, S.Y., Choi, J., Park, J.H., Song, Y.S. and Kim, K. (2017). Operational water quality forecast for the Yeongsan river using EFDC model, J. Korean Soc. Water Environ., 33(2), 219-229. 

  27. Shin, Y., Kim, T., Hong, S., Lee, S., Lee, E., Hong, S., Lee, C., Kim, T., Park, M.S., and Park, J. (2020). Prediction of chlorophyll-a concentrations in the Nakdong River using machine learning methods, Water, 12, 1822. 

  28. Shrikumar, A., Greenside, P., Shcherbina, A., and Kundaje, A., 2016. Not just a black box: learning important features through propagating activation differences arXiv preprint arXiv: 1605.01713. 

  29. Singh, K.P., Basant, N., and Gupta, S. (2011). Support vector machines in water quality management, Anal. Chim. Acta., 703, 152-162. 

  30. Song, J. (2017). K-Means cluster analysis for missing data, J. Korean Data Anal. Soc., 19, 689-697. 

  31. Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B. and Si, Y. (2018). A data-driven design for fault detection of wind turbines using random forests and XGboost. IEEE Access, 6, 21020-21031. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로