$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Silencing of the Target of Rapamycin Complex Genes Stimulates Tomato Fruit Ripening 원문보기

Molecules and cells, v.45 no.9, 2022년, pp.660 - 672  

Choi, Ilyeong (Department of Systems Biology, Yonsei University) ,  Ahn, Chang Sook (Department of Systems Biology, Yonsei University) ,  Lee, Du-Hwa (Department of Systems Biology, Yonsei University) ,  Baek, Seung-A (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ,  Jung, Jung Won (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ,  Kim, Jae Kwang (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ,  Lee, Ho-Seok (Department of Biology, Kyung Hee University) ,  Pai, Hyun-Sook (Department of Systems Biology, Yonsei University)

Abstract AI-Helper 아이콘AI-Helper

The target of rapamycin complex (TORC) plays a key role in plant cell growth and survival by regulating the gene expression and metabolism according to environmental information. TORC activates transcription, mRNA translation, and anabolic processes under favorable conditions, thereby promoting plan...

주제어

참고문헌 (79)

  1. Adaskaveg J.A. Silva C.J. Huang P. Blanco-Ulate B. 2021 Single and double mutations in tomato ripening transcription factors have distinct effects on fruit development and quality traits Front. Plant Sci. 12 647035 10.3389/fpls.2021.647035 33986762 

  2. Alba R. Payton P. Fei Z. McQuinn R. Debbie P. Martin G.B. Tanksley S.D. Giovannoni J.J. 2005 Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development Plant Cell 17 2954 2965 10.1105/tpc.105.036053 16243903 

  3. Al-Babili S. Bouwmeester H.J. 2015 Strigolactones, a novel carotenoid-derived plant hormone Annu. Rev. Plant Biol. 66 161 186 10.1146/annurev-arplant-043014-114759 25621512 

  4. Alexander L. Grierson D. 2002 Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening J. Exp. Bot. 53 2039 2055 10.1093/jxb/erf072 12324528 

  5. Anderson G.H. Veit B. Hanson M.R. 2005 The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth BMC Biol. 3 12 10.1186/1741-7007-3-12 15845148 

  6. Baek S.A. Im K.H. Park S.U. Oh S.D. Choi J. Kim J.K. 2019 Dynamics of short-term metabolic profiling in radish sprouts ( Raphanus sativus L.) in response to nitrogen deficiency Plants (Basel) 8 361 10.3390/plants8100361 31547524 

  7. Barry C.S. Llop-Tous M.I. Grierson D. 2000 The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato Plant Physiol. 123 979 986 10.1104/pp.123.3.979 10889246 

  8. Bemer M. Karlova R. Ballester A.R. Tikunov Y.M. Bovy A.G. Wolters-Arts M. Rossetto P.B. Angenent G.C. de Maagd R.A. 2012 The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening Plant Cell 24 4437 4451 10.1105/tpc.112.103283 23136376 

  9. Bishop G.J. Nomura T. Yokota T. Harrison K. Noguchi T. Fujioka S. Takatsuto S. Jones J.D. Kamiya Y. 1999 The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis Proc. Natl. Acad. Sci. U. S. A. 96 1761 1766 10.1073/pnas.96.4.1761 9990098 

  10. Bögre L. Henriques R. Magyar Z. 2013 TOR tour to auxin EMBO J. 32 1069 1071 10.1038/emboj.2013.69 23524852 

  11. Burch-Smith T.M. Schiff M. Liu Y. Dinesh-Kumar S.P. 2006 Efficient virus-induced gene silencing in Arabidopsis Plant Physiol. 142 21 27 10.1104/pp.106.084624 16815951 

  12. Burns J. Fraser P.D. Bramley P.M. 2003 Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables Phytochemistry 62 939 947 10.1016/S0031-9422(02)00710-0 12590121 

  13. Cucu T. Huvaere K. Van Den Bergh M.A. Vinkx C. Van Loco J. 2012 A simple and fast HPLC method to determine lycopene in foods Food Anal. Methods 5 1221 1228 10.1007/s12161-011-9354-6 

  14. Deprost D. Yao L. Sormani R. Moreau M. Leterreux G. Nicolaï M. Bedu M. Robaglia C. Meyer C. 2007 The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation EMBO Rep. 8 864 870 10.1038/sj.embor.7401043 17721444 

  15. Dobrenel T. Caldana C. Hanson J. Robaglia C. Vincentz M. Veit B. Meyer C. 2016 TOR signaling and nutrient sensing Annu. Rev. Plant Biol. 67 261 285 10.1146/annurev-arplant-043014-114648 26905651 

  16. Eriksson E.M. Bovy A. Manning K. Harrison L. Andrews J. De Silva J. Tucker G.A. Seymour G.B. 2004 Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening Plant Physiol. 136 4184 4197 10.1104/pp.104.045765 15563627 

  17. Esteban R. Moran J.F. Becerril J.M. García-Plazaola J.I. 2015 Versatility of carotenoids: an integrated view on diversity, evolution, functional roles and environmental interactions Environ. Exp. Bot. 119 63 75 10.1016/j.envexpbot.2015.04.009 

  18. Fu D.Q. Zhu B.Z. Zhu H.L. Jiang W.B. Luo Y.B. 2005 Virus-induced gene silencing in tomato fruit Plant J. 43 299 308 10.1111/j.1365-313X.2005.02441.x 15998315 

  19. Fu L. Liu Y. Qin G. Wu P. Zi H. Xu Z. Zhao X. Wang Y. Li Y. Yang S. 2021 The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth Nature 591 288 292 10.1038/s41586-021-03310-y 33658715 

  20. Fu L. Wang P. Xiong Y. 2020 Target of rapamycin signaling in plant stress responses Plant Physiol. 182 1613 1623 10.1104/pp.19.01214 31949028 

  21. Fujisawa M. Nakano T. Shima Y. Ito Y. 2013 A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening Plant Cell 25 371 386 10.1105/tpc.112.108118 23386264 

  22. Fujisawa M. Shima Y. Nakagawa H. Kitagawa M. Kimbara J. Nakano T. Kasumi T. Ito Y. 2014 Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins Plant Cell 26 89 101 10.1105/tpc.113.119453 24415769 

  23. Gao Y. Wei W. Fan Z. Zhao X. Zhang Y. Jing Y. Zhu B. Zhu H. Shan W. Chen J. 2020 Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening J. Exp. Bot. 71 3560 3574 10.1093/jxb/eraa131 32338291 

  24. Gao Y. Wei W. Zhao X. Tan X. Fan Z. Zhang Y. Jing Y. Meng L. Zhu B. Zhu H. 2018 A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening Hortic. Res. 5 75 10.1038/s41438-018-0111-5 30588320 

  25. Gapper N.E. McQuinn R.P. Giovannoni J.J. 2013 Molecular and genetic regulation of fruit ripening Plant Mol. Biol. 82 575 591 10.1007/s11103-013-0050-3 23585213 

  26. Garapati P. Xue G.P. Munné-Bosch S. Balazadeh S. 2015 Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades Plant Physiol. 168 1122 1139 10.1104/pp.15.00567 25953103 

  27. Giovannoni J. Nguyen C. Ampofo B. Zhong S. Fei Z. 2017 The epigenome and transcriptional dynamics of fruit ripening Annu. Rev. Plant Biol. 68 61 84 10.1146/annurev-arplant-042916-040906 28226232 

  28. Giovannoni J.J. 2007 Fruit ripening mutants yield insights into ripening control Curr. Opin. Plant Biol. 10 283 289 10.1016/j.pbi.2007.04.008 17442612 

  29. Guo Y. Gan S. 2006 AtNAP, a NAC family transcription factor, has an important role in leaf senescence Plant J. 46 601 612 10.1111/j.1365-313X.2006.02723.x 16640597 

  30. Houben M. Van de Poel B. 2019 1-aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene Front. Plant Sci. 10 695 10.3389/fpls.2019.00695 31191592 

  31. Ito Y. Sekiyama Y. Nakayama H. Nishizawa-Yokoi A. Endo M. Shima Y. Nakamura N. Kotake-Nara E. Kawasaki S. Hirose S. 2020 Allelic mutations in the ripening-inhibitor locus generate extensive variation in tomato ripening Plant Physiol. 183 80 95 10.1104/pp.20.00020 32094307 

  32. Kaulfürst-Soboll H. Mertens-Beer M. Brehler R. Albert M. von Schaewen A. 2021 Complex N-glycans are important for normal fruit ripening and seed development in tomato Front. Plant Sci. 12 635962 10.3389/fpls.2021.635962 33767719 

  33. Klee H.J. 2002 Control of ethylene‐mediated processes in tomato at the level of receptors J. Exp. Bot. 53 2057 2063 10.1093/jxb/erf062 12324529 

  34. Klee H.J. Giovannoni J.J. 2011 Genetics and control of tomato fruit ripening and quality attributes Annu. Rev. Genet. 45 41 59 10.1146/annurev-genet-110410-132507 22060040 

  35. Kumar R. Khurana A. Sharma A.K. 2014 Role of plant hormones and their interplay in development and ripening of fleshy fruits J. Exp. Bot. 65 4561 4575 10.1093/jxb/eru277 25028558 

  36. Kumar R. Tamboli V. Sharma R. Sreelakshmi Y. 2018 NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life Food Chem. 259 234 244 10.1016/j.foodchem.2018.03.135 29680049 

  37. Lai T. Wang X. Ye B. Jin M. Chen W. Wang Y. Zhou Y. Blanks A.M. Gu M. Zhang P. 2020 Molecular and functional characterization of the SBP-box transcription factor SPL-CNR in tomato fruit ripening and cell death J. Exp. Bot. 71 2995 3011 10.1093/jxb/eraa067 32016417 

  38. Lee D.H. Park S.J. Ahn C.S. Pai H.S. 2017 MRF family genes are involved in translation control, especially under energy-deficient conditions, and their expression and functions are modulated by the TOR signaling pathway Plant Cell 29 2895 2920 10.1105/tpc.17.00563 29084871 

  39. Leiva-Ampuero A. Agurto M. Matus J.T. Hoppe G. Huidobro C. Inostroza-Blancheteau C. Reyes-Díaz M. Stange C. Canessa P. Vega A. 2020 Salinity impairs photosynthetic capacity and enhances carotenoid-related gene expression and biosynthesis in tomato ( Solanum lycopersicum L. cv Micro-Tom). PeerJ 8 e9742 10.7717/peerj.9742 32995076 

  40. Li C. Hou X. Qi N. Liu H. Li Y. Huang D. Wang C. Liao W. 2021 Insight into ripening-associated transcription factors in tomato: a review Sci. Hortic. 288 110363 10.1016/j.scienta.2021.110363 

  41. Li S. Zhu B. Pirrello J. Xu C. Zhang B. Bouzayen M. Chen K. Grierson D. 2020 Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits New Phytol. 226 460 475 10.1111/nph.16362 31814125 

  42. Liang B. Zheng Y. Wang J. Zhang W. Fu Y. Kai W. Xu Y. Yuan B. Li Q. Leng P. 2020 Overexpression of the persimmon abscisic acid β-glucosidase gene ( DkBG1 ) alters fruit ripening in transgenic tomato Plant J. 102 1220 1233 10.1111/tpj.14695 31960511 

  43. Lima J.E. Carvalho R.F. Neto A.T. Figueira A. Peres L.E.P. 2004 Micro-MsK: a tomato genotype with miniature size, short life cycle, and improved in vitro shoot regeneration Plant Sci. 167 753 757 10.1016/j.plantsci.2004.05.023 

  44. Liu M. Pirrello J. Chervin C. Roustan J.P. Bouzayen M. 2015 Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation Plant Physiol. 169 2380 2390 10.1104/pp.15.01361 26511917 

  45. Liu Y. Shi Y. Su D. Lu W. Li Z. 2021 SlGRAS4 accelerates fruit ripening by regulating ethylene biosynthesis genes and SlMADS1 in tomato Hortic. Res. 8 3 10.1038/s41438-020-00431-9 33384413 

  46. López-Vidal O. Olmedilla A. Sandalio L.M. Sevilla F. Jiménez A. 2020 Is autophagy involved in pepper fruit ripening? Cells 9 106 10.3390/cells9010106 31906273 

  47. Lu S. Li L. 2008 Carotenoid metabolism: biosynthesis, regulation, and beyond J. Integr. Plant Biol. 50 778 785 10.1111/j.1744-7909.2008.00708.x 18713388 

  48. Ma X. Balazadeh S. Mueller-Roeber B. 2019 Tomato fruit ripening factor NOR controls leaf senescence J. Exp. Bot. 70 2727 2740 10.1093/jxb/erz098 31002305 

  49. Ma X. Zhang Y. Turečková V. Xue G.P. Fernie A.R. Mueller-Roeber B. Balazadeh S. 2018 The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato Plant Physiol. 177 1286 1302 10.1104/pp.18.00292 29760199 

  50. Manning K. Tör M. Poole M. Hong Y. Thompson A.J. King G.J. Giovannoni J.J. Seymour G.B. 2006 A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening Nat. Genet. 38 948 952 10.1038/ng1841 16832354 

  51. Martí E. Gisbert C. Bishop G.J. Dixon M.S. García-Martínez J.L. 2006 Genetic and physiological characterization of tomato cv Micro-Tom. J. Exp. Bot. 57 2037 2047 10.1093/jxb/erj154 16687436 

  52. Menand B. Desnos T. Nussaume L. Berger F. Bouchez D. Meyer C. Robaglia C. 2002 Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene Proc. Natl. Acad. Sci. U. S. A. 99 6422 6427 10.1073/pnas.092141899 11983923 

  53. Moreau M. Azzopardi M. Clément G. Dobrenel T. Marchive C. Renne C. Martin-Magniette M.L. Taconnat L. Renou J.P. Robaglia C. 2012 Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days Plant Cell 24 463 481 10.1105/tpc.111.091306 22307851 

  54. Musseau C. Just D. Jorly J. Gévaudant F. Moing A. Chevalier C. Lemaire-Chamley M. Rothan C. Fernandez L. 2017 Identification of two new mechanisms that regulate fruit growth by cell expansion in tomato Front. Plant Sci. 8 988 10.3389/fpls.2017.00988 28659942 

  55. Nath A. Bagchi B. Misra L.K. Deka B.C. 2011 Changes in post-harvest phytochemical qualities of broccoli florets during ambient and refrigerated storage Food Chem. 127 1510 1514 10.1016/j.foodchem.2011.02.007 

  56. Oh Y. Kim S.G. 2021 RPS5A promoter-driven Cas9 produces heritable virus-induced genome editing in Nicotiana attenuata Mol. Cells 44 911 919 10.14348/molcells.2021.0237 34963106 

  57. Pinheiro T.T. Peres L.E.P. Purgatto E. Latado R.R. Maniero R.A. Martins M.M. Figueira A. 2019 Citrus carotenoid isomerase gene characterization by complementation of the "Micro-Tom" tangerine mutant Plant Cell Rep. 38 623 636 10.1007/s00299-019-02393-2 30737538 

  58. Pnueli L. Gutfinger T. Hareven D. Ben-Naim O. Ron N. Adir N. Lifschitz E. 2001 Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering Plant Cell 13 2687 2702 10.1105/tpc.010293 11752381 

  59. Quinet M. Angosto T. Yuste-Lisbona F.J. Blanchard-Gros R. Bigot S. Martinez J.P. Lutts S. 2019 Tomato fruit development and metabolism Front. Plant Sci. 10 1554 10.3389/fpls.2019.01554 31850035 

  60. Robaglia C. Thomas M. Meyer C. 2012 Sensing nutrient and energy status by SnRK1 and TOR kinases Curr. Opin. Plant Biol. 15 301 307 10.1016/j.pbi.2012.01.012 22305521 

  61. Ryabova L.A. Robaglia C. Meyer C. 2019 Target of rapamycin kinase: central regulatory hub for plant growth and metabolism J. Exp. Bot. 70 2211 2216 10.1093/jxb/erz108 30984977 

  62. Salem M.A. Li Y. Wiszniewski A. Giavalisco P. 2017 Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential Plant J. 92 525 545 10.1111/tpj.13667 28845535 

  63. Schepetilnikov M. Ryabova L.A. 2018 Recent discoveries on the role of TOR (target of rapamycin) signaling in translation in plants Plant Physiol. 176 1095 1105 10.1104/pp.17.01243 29122989 

  64. Sharma K. Gupta S. Sarma S. Rai M. Sreelakshmi Y. Sharma R. 2021 Mutations in tomato 1-aminocyclopropane carboxylic acid synthase2 uncover its role in development beside fruit ripening Plant J. 106 95 112 10.1111/tpj.15148 33370496 

  65. Shikata M. Ezura H. 2016 Micro-Tom tomato as an alternative plant model system: mutant collection and efficient transformation Methods Mol. Biol. 1363 47 55 10.1007/978-1-4939-3115-6_5 26577780 

  66. Stanley L. Yuan Y.W. 2019 Transcriptional regulation of carotenoid biosynthesis in plants: so many regulators, so little consensus Front. Plant Sci. 10 1017 10.3389/fpls.2019.01017 31447877 

  67. Tanaka Y. Sasaki N. Ohmiya A. 2008 Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids Plant J. 54 733 749 10.1111/j.1365-313X.2008.03447.x 18476875 

  68. Tang X. Zhuang Y. Qi G. Wang D. Liu H. Wang K. Chai G. Zhou G. 2015 Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation Sci. Rep. 5 12240 10.1038/srep12240 26179205 

  69. Vrebalov J. Pan I.L. Arroyo A.J.M. McQuinn R. Chung M. Poole M. Rose J. Seymour G. Grandillo S. Giovannoni J. 2009 Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1 Plant Cell 21 3041 3062 10.1105/tpc.109.066936 19880793 

  70. Wang R. Lammers M. Tikunov Y. Bovy A.G. Angenent G.C. de Maagd R.A. 2020 The rin , nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners Plant Sci. 294 110436 10.1016/j.plantsci.2020.110436 32234221 

  71. Wullschleger S. Loewith R. Hall M.N. 2006 TOR signaling in growth and metabolism Cell 124 471 484 10.1016/j.cell.2006.01.016 16469695 

  72. Xiong F. Dong P. Liu M. Xie G. Wang K. Zhuo F. Feng L. Yang L. Li Z. Ren M. 2016 Tomato FK506 binding protein 12KD (FKBP12) mediates the interaction between rapamycin and target of rapamycin (TOR) Front. Plant Sci. 7 1746 10.3389/fpls.2016.01746 27917191 

  73. Xiong Y. Sheen J. 2013 Moving beyond translation: glucose-TOR signaling in the transcriptional control of cell cycle Cell Cycle 12 1989 1990 10.4161/cc.25308 23759578 

  74. Yazdani M. Sun Z. Yuan H. Zeng S. Thannhauser T.W. Vrebalov J. Ma Q. Xu Y. Fei Z. Van Eck J. 2019 Ectopic expression of ORANGE promotes carotenoid accumulation and fruit development in tomato Plant Biotechnol. J. 17 33 49 10.1111/pbi.12945 29729208 

  75. Yokotani N. Nakano R. Imanishi S. Nagata M. Inaba A. Kubo Y. 2009 Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated J. Exp. Bot. 60 3433 3442 10.1093/jxb/erp185 19605457 

  76. Yu W. Peng F. Xiao Y. Wang G. Luo J. 2018 Overexpression of PpSnRK1α in tomato promotes fruit ripening by enhancing RIPENING INHIBITOR regulation pathway Front. Plant Sci. 9 1856 10.3389/fpls.2018.01856 30619421 

  77. Zhao D. Derkx A.P. Liu D.C. Buchner P. Hawkesford M.J. 2015 Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat Plant Biol. (Stuttg.) 17 904 913 10.1111/plb.12296 25545326 

  78. Zhou Y. Huang W. Liu L. Chen T. Zhou F. Lin Y. 2013 Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence BMC Plant Biol. 13 132 10.1186/1471-2229-13-132 24028154 

  79. Zhuo F. Xiong F. Deng K. Li Z. Ren M. 2020 Target of rapamycin (TOR) negatively regulates ethylene signals in Arabidopsis Int. J. Mol. Sci. 21 2680 10.3390/ijms21082680 32290539 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로