$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

보 개방 후 노출된 금강 모래톱에서 하천 식생의 공간 분포와 천이
Spatial Distribution and Successional Changes of Riparian Vegetation on Sandbars Exposed after Watergate-Opening of Weirs in the Geumgang River, South Korea 원문보기

Ecology and resilient infrastructure, v.9 no.3, 2022년, pp.194 - 205  

이철호 (인하대학교 바이오시스템융합학과) ,  김휘래 ((주)수성엔지니어링 환경사업부) ,  조강현 (인하대학교 생명과학과)

초록
AI-Helper 아이콘AI-Helper

하천에서 유사의 이동 및 퇴적으로 형성된 모래톱은 특이한 생물의 서식과 심미적 경관 측면에서 중요한 서식처이다. 본 연구는 보 상류에서 수문 개방에 의하여 노출된 모래톱에서 초기 식생의 발달과 그 분포를 확인하여 시간 경과에 따른 식생변화 과정을 파악하고자 하였다. 보 수문 개방 시기가 다른 금강의 3개 보 개방 구간과 보 운영에 영향을 받지 않는 대조 구간에서 보 개방 후 노출된 모래톱에서 식물군집 구조와 공간 분포의 변화를 파악하고 모래톱의 노출 기간에 따른 식물 군집 구조의 변화를 조사하였다. 금강의 보 상류구간에서 수문 개방으로 기존 홍수터 면적의 33% 이상의 면적에 해당하는 모래톱이 새롭게 형성되었다. 노출된 모래톱에는 1년생 중생식물, 다년생 수생식물, 다년생 습생식물, 아교목, 교목 군집에 속하는 9개 식물군집이 분포하였다. 모래톱의 노출 기간이 길어 짐에 따라서 나지 모래톱, 1년생 초본식물, 다년생 수생식물 군집의 면적은 감소하였고, 다년생 습생식물, 아교목, 교목 군집의 면적은 증가하였다. 하천 모래톱에서 시간 경과에 따른 식생의 변화는 수위 하강 전 수중 서식처의 조건과 물 흐름에 의한 물리적 교란의 정도에 따라서 3가지 천이 유형으로 구분할 수 있었다. 즉 모래톱의 천이과정은 1) 수생식물로부터 시작하는 '정수지 천이', 2) 일년생 습생 초본식물로부터 시작하는 '유수지 천이', 3) 버드나무류로 시작하는 '버드나무류 천이'로 구분할 수 있었다. 따라서 금강의 보 구간에서 하천 서식처 및 경관의 변화를 체계적으로 관리하기 위하여 모래톱에서의 식생 천이계열을 반영하여야 할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Sandbars formed by sediment transportation and sedimentation are some of the most important habitats for specific wildlife and they provide an aesthetic landscape in streams. The purpose of this study was to understand the successional process of the colonization and development of early vegetation ...

주제어

표/그림 (9)

참고문헌 (51)

  1. Ablat, X., Liu, G., Liu, Q., and Huang, C. 2019. Application of Landsat derived indices and hydrological alteration matrices to quantify the response of floodplain wetlands to river hydrology in arid regions based on different dam operation strategies. Science of the Total Environment 688: 1389-1404. 

  2. Azami, K., Fukuyama, A., Asaeda, T., Takechi, Y., Nakazawa, S., and Tanida, K. 2013 Conditions of establishment for the Salix community at lower-thannormal water levels along a dam reservoir shoreline. Landscape and Ecological Engineering 9(2): 227-238. 

  3. Benjankar, R., Jorde, K., Yager, E.M., Egger, G., Goodwin, P., and Glenn, N.F. 2012. The impact of river modification and dam operation on floodplain vegetation succession trends in the Kootenai River, USA. Ecological Engineering 46: 88-97. 

  4. Blom, C.W.P.M., Bogemann, G.M., Laan, P., van der Sman, A.J.M., van de Steeg, H.M., and Voesenek, L.A.C.J. 1990. Adaptations to flooding in plants from river areas. Aquatic Botany 38(1): 29-47. 

  5. Cho, H.J. 2012. Mechanisms and Model of Early Succession of Riparian Vegetation in a Sandy Stream. Ph. D Thesis, Inha University, Incheon, South Korea. (in Korean) 

  6. Cho, H.J. and Cho, K.H. 2005. Responses of riparian vegetation to flooding disturbance in a sand stream. KSCE Journal of Civil Engineering 9(1): 49-53. 

  7. Cho, H.J., Jin, S.N., Lee, H., Marrs, R.H., and Cho, K. H. 2018. The relationship between the soil seed bank and above-ground vegetation in a sandy floodplain, South Korea. Ecology and Resilient Infrastructure 5(3): 145-155. 

  8. Choung, Y., Min, B.M., Lee, K.S., Cho, K.H., Joo, K.Y., Hyun, J.O., ... and Kim, J.S. 2020. Wetland Preference and Life Form of the Vascular Plants in the Korean Peninsula, National Institute of Biological Resources, Incheon, South Korea. (In Korean) 

  9. Corenblit, D., Steiger, J., Gurnell, A.M., Tabacchi, E., and Roques, L. 2009. Control of sediment dynamics by vegetation as a key function driving biogeomorphic succession within fluvial corridors. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 34(13): 1790-1810. 

  10. Corenblit, D., Tabacchi, E., Steiger, J., and Gurnell, A.M. 2007. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. EarthScience Reviews 84(1-2): 56-86. 

  11. Farnsworth, J.M., Baasch, D.M., Smith, C.B., and Werbylo, K.L. 2017. Reproductive ecology of interior least tern and piping plover in relation to Platte River hydrology and sandbar dynamics. Ecology and Evolution 7(10): 3579-3589. 

  12. Ghosh, S. and Mistri, B. 2015. Geographic concerns on flood climate and flood hydrology in monsoon-dominated Damodar River basin, Eastern India. Geography Journal 2015: 486740. doi: 10.1155/2015/486740. 

  13. Gudzinskas, Z. and Taura, L. 2021. Scirpus radicans (Cyperaceae), a newly-discovered native species in Lithuania: population, habitats and threats. Biodiversity Data Journal 9: e65674. doi: 10.3897/BDJ.9.e65674. 

  14. HRFCO (Hangang River Flood Control Office). 2014. Korean River Catalog. Hangang River Flood Control Office, Ministry of Land Transport and Maritime Affairs. Seoul, South Korea. (in Korean) 

  15. Jeong, A. and Jung, K. 2015. Analysis of long-term riverbed-level and flood stage variation due to water gate operation of multi-functional weirs at Geum River. Journal of Korea Water Resources Association 48(5): 379-391. (in Korean) 

  16. Kim, D., Lee, C., Kim, H., Ock, G., and Cho, K.H. 2021. Changes in landscape characteristics of stream habitats with the construction and operation of river-crossing structures in the Geum-gang River, South Korea. Ecology and Resilient Infrastructure 8(1): 64-78. (in Korean) 

  17. Kim, S.-R., Lee, J.-H., Song, J.-Y., Chang, M.-H., Sung, H.-C., and Cho, D.-G. 2013. A study on the habitat restoration model for Chinemys reevesii. Journal of the Korea Society of Environmental Restoration Technology 16(2): 115-125. (in Korean) 

  18. Knapp, R. 1974. Cyclic successions and ecosystem approaches in vegetation dynamics. In, Knapp, R. (ed.), Vegetation Dynamics. Springer, Dordrecht, the Netherlands, pp. 91-100. 

  19. Laliberte, E. and Legendre, P. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299-305. 

  20. Lee, C., Lee, K., Kim, H., Baek, D., Kim, W., Woo, H., Cho, K.-H., and Kim, D. 2022. Impacts of an extreme flood event on the riparian vegetation of a monsoonal cobble-bed stream in southern Korea: A multiscale fluvial biogeomorphic framework. River Research and Applications 38: 1101-1114. 

  21. Lee, P.H., Son, S.G., Kim, C.S., and Oh, K.H. 2000. Population Dynamics of Salix nipponica and S. koreensis during the Riverbed Sedimentation in the Wetland of the Nam-River. Journal of Wetlands Research 2(1): 95-107. (in Korean) 

  22. Lee, S-H., Ock, G-Y., and Choi, J.-K. 2008. A study on the expansion process of vegetation on sand-bar in fluvial Meandering Stream. Korean Journal of Environment and Ecology 22(6): 658-665. (in Korean) 

  23. Lee, Y.K. and Kim, J.W. 2005. Riparian Vegetation of South Korea. Keimyung University Press, Daegu, South Korea. (in Korean) 

  24. Lim, B.S., Seol, J., Kim, A.R., An, J.H., Lim, C.H., and Lee, C.S. 2022. Succession of the abandoned rice fields restores the riparian forest. International Journal of Environmental Research and Public Health 19(16): 10416. doi: 10.3390/ijerph191610416. 

  25. MOE (Ministry of Environment). 2010. Research on the Effect of Weir Construction on Freshwater Ecosystem. Ministry of Environment, Sejong, South Korea. (in Korean) 

  26. MOE (Ministry of Environment). 2016. Aquatic Ecosystem Monitoring in the Weirs of Geum River. Ministry of Environment, Sejong, South Korea. (in Korean) 

  27. MOE (Ministry of Environment). 2021. Aquatic Ecosystem Monitoring in the Weirs of Geum River. Ministry of Environment, Sejong, South Korea. (in Korean) 

  28. MOLIT (Ministry of Land, Infrastructure and Transport), MOE (Ministry of Environment), and MAFRA (Ministry of Agriculture, Food and Rural Affairs). 2017. The Report on the Optimal Linkage Operation Plan between Dam-Weir-Reservoir. Ministry of Land, Infrastructure and Transport), Ministry of Environment, and Ministry of Agriculture, Food and Rural Affairs, Sejong, South Korea. (in Korean) 

  29. MOLIT (Ministry of Land, Infrastructure and Transport). 2016a. Geumgang River Basic Plan Report. Ministry of Land, Infrastructure and Transport, Sejong, South Korea. (in Korean) 

  30. MOLIT (Ministry of Land, Infrastructure and Transport). 2016b. Aerial Photo Issuance Service. Ministry of Land, Infrastructure and Transport. http://map.ngii.go.kr/ms/map/Aerial.do. Accessed 27 January 2021. 

  31. MOLTM (Ministry of Land, Transport and Maritime). 2009. Master Plan of Four Major Rivers Restoration. Ministry of Land, Transport and Maritime, Gwacheon, South Korea. (in Korean) 

  32. Mullerova, A., Rehounkova, K., and Prach, K. 2022. Succession of aquatic and littoral vegetation in disused sandpits. Land Degradation & Development 33(2): 257-268. 

  33. Naiman, R.J., Decamps, H., and McClain, M.E. 2010. Riparia: Ecology, Conservation, and Management of Streamside Communities. Elsevier, Amsterdam, the Netherlands. 

  34. Ock, G., Choi, M. Kim, J.-C., Park, H.-G., and Han, J.H. 2020. Evaluation of habitat diversity changes by weir operation of the Sejongbo Weir in Geum River using high-resolution aerial photographs. Ecology and Resilient Infrastructure 7(4): 366-373. (in Korean) 

  35. ODM (OpenDroneMap). 2020. A Command Line Toolkit to Generate Maps, Point Clouds, 3D Models and DEMs from Drone, Balloon or Kite Images. https://github.com/OpenDroneMap/ODM. Accessed 11 November 2020. 

  36. Oh, G., Yang, J., and Cho H. 2011. Geomorphological significance and role of the sand bars of major river valleys in the South Korea - case study on the Nakdong River valleys. Journal of the Korean Geomorphological Association 18(2): 1-14. (in Korean) 

  37. Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., ... and Weedon, J. 2022. Vegan: Community Ecology Package, R package, version 2.6-2, https://CRAN.R-project.org/packagevegan. 

  38. Pielou, E.C. 1969. An Introduction to Mathematical Ecology. Wiley, New York, USA. 

  39. Prach, K., Petrik, P., Broz, Z., and Song, J.S. 2014. Vegetation succession on river sediments along the Nakdong River, South Korea. Folia Geobotanica 49(4): 507-519. 

  40. QGIS.org. 2022. QGIS Geographic Information System. QGIS Association, http://www.qgis.org. Accessed 20 June 2022. 

  41. R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 

  42. Walker, L.R. 2012. The Biology of Disturbed Habitats. Oxford University Press, Oxford, UK. 

  43. Walker, L.R. and Del Moral, R. 2003. Primary Succession and Ecosystem Rehabilitation. Cambridge University Press, Cambridge, UK. 

  44. Ward, J.V. 1997. An expansive perspective of riverine landscapes: pattern and process across scales. GAIAEcological Perspectives for Science and Society 6(1): 52-60. 

  45. Whited, D.C., Lorang, M.S., Harner, M.J., Hauer, F.R., Kimball, J.S., and Stanford, J.A. 2007. Climate, hydrologic disturbance, and succession: drivers of floodplain pattern. Ecology 88(4): 940-953. 

  46. Whittaker, R.H. 1965. Dominance and diversity in land plant communities. Science 147: 250-260. 

  47. Woo, H, Park, M, Cho, K.-H., Cho, H., and Chung, S. 2010. Recruitment and succession of riparian vegetation in alluvial river regulated by upstream dams - focused on the Nakdong River downstream Andong and Imha Dams. Journal of Korea Water Resources Association 43(5): 455-469. (in Korean) 

  48. Woo, H. 2008. White river? green river? Water for Future 41(12): 38-47. (in Korean) 

  49. Wright, S.A. and Kaplinski, M. 2011. Flow structures and sandbar dynamics in a canyon river during a controlled flood, Colorado River, Arizona. Journal of Geophysical Research 116: F01019. doi: 10.1029/2009JF001442. 

  50. Yoon, H.-Y., Yun, K.-S., and JANG, D.-H. 2021. A Study on the characteristics of depositional landform change in the Geum River channel using unmanned aerial vehicle: focusing on before and after the opening gate of Gongju Weir. Journal of the Korean Geomorphological Association 28(4): 1-13. (in Korean) 

  51. Zhang, H., Muto, Y., Nakagawa, H., and Nakanishi, S. 2012. Weir removal and its influence on hydro-morphological features of upstream channel. Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM)) 68(2): I_591-I_599. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로