최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기정보관리학회지 = Journal of the Korean society for information management, v.39 no.3, 2022년, pp.311 - 336
송성전 , 심지영 (연세대학교 대학도서관발전연구소)
This study analyzed the contents of Goodreads review data, which is a social cataloging service with the participation of book users around the world, to identify the preference factors that affect book users' book recommendations in the library information service environment. To understand user pr...
Choi, Jieun, Ryu, Hyejin, Yu, Dabeen, Kim, Nara, & Kim, Yoonhee (2016). System design for analysis and evaluation of e-commerce products using review sentiment word analysis. Korean Institute of Information Scientists and Engineers Transactions on Computing Practices, 22(5), 209-217.
Kim, Ra Yeon & Park, Eun Gyung (2011). A study on the analysis of essential ingredient for Book Reports. Education Research Studies, 17, 17-30.
Park, Dong Jin (2010). Condition of writing book reports. Korean Education, 84, 109-125.
Son, Eun-Jeong, Park, Tae-yeon, & Oh, Hyo-Jung (2020). Analysis of utilization status and preference factors of reading room in university library based on user log data: focusing on the case of "J" university. Journal of the Korean Society for Library and Information Science, 54(2), 375-398. https://doi.org/10.4275/KSLIS.2020.54.2.375
Yu, Da-bin, Ryu, Hye-jin, Kim, Na-ra, & Kim, Yoon-hee (2015). A design of a system for customized comparison and evaluation of books using integrated review emotion words analysis. Proceedings of the Korea Information Processing Society Conference, 22(1), 108-111. https://doi.org/10.3745/PKIPS.y2015m04a.108
Begay, W., Lee, D. R., Martin, J., & Ray, M. (2004). Quantifying qualitative data: using LibQUAL+ (TM) comments for library-wide planning activities at the university of arizona. Journal of Library Administration, 40(3-4), 111-119. https://doi.org/10.1300/j111v40n03_09
Chen, L., Chen, G., & Wang, F. (2015). Recommender systems based on user reviews: the state of the art. User Modeling and User-Adapted Interaction, 25(2), 99-154. https://doi.org/10.1007/s11257-015-9155-5
Goodreads (2022, September 5). Public Library Groups. Available: https://www.goodreads.com/group/show_tag/public-library
Korfiatis, N., Stamolampros, P., Kourouthanassis, P., & Sagiadinos, V. (2019). Measuring service quality from unstructured data: a topic modeling application on airline passengers' online reviews. Expert Systems with Applications, 116, 472-486. https://doi.org/10.1016/j.eswa.2018.09.037
Kousha, K., Thelwall, M., & Abdoli, M. (2017). Goodreads reviews to assess the wider impacts of books. Journal of the Association for Information Science and Technology, 68(8), 2004-2016. https://doi.org/10.1002/asi.23805
Lam, A. H. C., Ho, K. K. W., & Chiu, D. K. W. (2022). Instagram for student learning and library promotions: a quantitative study using the 5E Instructional Model. Aslib Journal of Information Management(ahead-of-print). https://doi.org/10.1108/ajim-12-2021-0389
Liu, H., He, J., Wang, T., Song, W., & Du, X. (2013). Combining user preferences and user opinions for accurate recommendation. Electronic Commerce Research and Applications, 12(1), 14-23. https://doi.org/10.1016/j.elerap.2012.05.002.
Mariana, S., Surjandari, I., Dhini, A., Rosyidah, A., & Prameswari, P. (2017). Association rule mining for building book recommendation system in online public access catalog. Proceedings of the 2017 3rd International Conference on Science in Information Technology, 246-250. https://doi.org/10.1109/icsitech.2017.8257119
McNee, S. M., Riedl, J., & Konstan, J. A. (2006, April 22-27). Being accurate is not enough: how accuracy metrics have hurt recommender systems. Paper presented at the CHI'06 extended abstracts on Human factors in computing systems, Montreal Quebec Canada, 1097-1101. https://doi.org/10.1145/1125451.1125659
Naik, Y. & Trott, B. (2012). Finding good reads on Goodreads: Readers take RA into their own hands. Reference and User Services Quarterly, 51(4), 319-323.
Netzer, O., Toubia, O., Bradlow, E. T., Dahan, E., Evgeniou, T., Feinberg, F. M., Feit, E. M., Hui, S. K., Johnson, J., Liechty, J., Orlin, J. B., & Rao, V. R. (2008). Beyond Conjoint Analysis: Advances in Preference Measurement. Marketing Letters, 19(3/4), 337-354. https://doi.org/10.1007/s11002-008-9046-1
Park, S. (2000). Usability, user preferences, effectiveness, and user behaviors when searching individual and integrated full-text databases: implications for digital libraries. Journal of the American Society for Information Science, 51(5), 456-468. https://doi.org/10.1002/(SICI)1097-4571(2000)51:5 3.0.CO;2-O
Qi, P., Zhang, Y., Zhang, Y., Bolton, J., & Manning, C. D. (2020). Stanza: a python natural language processing toolkit for many human languages. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 101-108. https://doi.org/10.48550/arXiv.2003.07082
Reyes, B. M. & Devlin, F. A. (2021). An assessment of e-book collection development practices among romance language librarians. Collection and Curation, 40(1), 24-30. https://doi.org/10.1108/cc-12-2019-0047
Ryan, M. & Farrar, S. (2000). Using conjoint analysis to elicit preferences for health care. Bmj, 320(7248), 1530-1533. https://doi.org/10.1136/bmj.320.7248.1530
Shah, A. M., Yan, X., Tariq, S., & Ali, M. (2021). What patients like or dislike in physicians: analyzing drivers of patient satisfaction and dissatisfaction using a digital topic modeling approach. Information Processing & Management, 58(3), 102516. https://doi.org/10.1016/j.ipm.2021.102516
Sohail, S. S., Siddiqui, J., & Ali, R. (2013, August 22-25). Book Recommendation System Using Opinion Mining Technique. Paper presented at the 2013 International Conference on Advances in Computing, Communications and Informatics, Mysore, India, 1609-1614. https://doi.org/10.1109/icacci.2013.6637421
Thelwall, M. & Kousha, K. (2017). Goodreads: A social network site for book readers. Journal of the Association for Information Science and Technology, 68(4), 972-983. https://doi.org/10.1002/asi.23733
Tu, Y. F., Chang, S. C., & Hwang, G. J. (2021). Analysing reader behaviours in self-service library stations using a bibliomining approach. Electronic Library, 39(1), 1-16. https://doi.org/10.1108/el-01-2020-0004
Tubishat, M., Idris, N., & Abushariah, M. A. (2018). Implicit aspect extraction in sentiment analysis: review, taxonomy, oppportunities, and open challenges. Information Processing & Management, 54(4), 545-563. https://doi.org/10.1016/j.ipm.2018.03.008
Wilson, K. M., Hooper, R., Simpson, J., & Slay, J. (2021). Comparing print and ebook usage to meet patron needs. Collection Management, 46(2), 91-106. https://doi.org/10.1080/01462679.2020.1833802
Wu, D., He, D., Qiu, J., Lin, R., & Liu, Y. (2013). Comparing social tags with subject headings on annotating books: a study comparing the information science domain in English and Chinese. Journal of Information Science, 39(2), 169-187. https://doi.org/10.1177/0165551512451808
Wu, F., Hu, Y. H., & Wang, P. R. (2017). Developing a novel recommender network-based ranking mechanism for library book acquisition. Electronic Library, 35(1), 50-68. https://doi.org/10.1108/el-06-2015-0094
Xiao, S., Wei, C. P., & Dong, M. (2016). Crowd intelligence: analyzing online product reviews for preference measurement. Information & Management, 53(2), 169-182. https://doi.org/10.1016/j.im.2015.09.010
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.