$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

직각 광정 위어를 지나는 천수 흐름의 수치 해석
Numerical analysis of shallow-water flow over the square-edged broad-crested weir 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.55 no.10, 2022년, pp.811 - 821  

황승용 (한국건설기술연구원)

초록
AI-Helper 아이콘AI-Helper

불연속 지형 전면에 작용하는 정수압 분포에 실제 압력과 차이를 해명하는 흐름률 보정 계수를 도입하여 불연속 지형을 직접 해석하는 Hwang의 기법이 적용된 수치 모형의 정확도를 높일 수 있었다. 218개 실험 시행으로 직각 광정 위어의 월류량에 가장 적합한 계수를 결정하였으며, 이것을 별도의 두 가지 직립 광정 위어 실험과 측면 위어 부정류 실험에 적용해보니 실험과 모의에서 월류량이 서로 잘 일치하였다. 이로써 조밀한 격자로 불연속 지형을 완화하거나 내부 경계를 부여하지 않고도 직각 광정 위어와 같은 불연속 하천 구조물을 지나는 천수 흐름의 정확한 수치 모의가 가능해졌다.

Abstract AI-Helper 아이콘AI-Helper

Accuracy of a numerical model with the Hwang's scheme of directly analyzing discontinuous topography could be enhanced by introducing a flux correction coefficient that accounted for the deviation of actual pressure from hydrostatic distribution acting on the front of discontinuous topography. The o...

주제어

표/그림 (9)

참고문헌 (37)

  1. Batten, P., Lambert, C., and Causon, D.M. (1996). "Positively conservative high-resolution convection schemes for unstructured elements." International Journal for Numerical Methods in Engineering, Vol. 39, No. 11, pp. 1821-1838. 

  2. Bureau of Reclamation (Reclamation) (2001). Water measurement manual. A Water Resources Technical Publication, United States Department of the Interior, Washington, D.C., U.S. 

  3. Doeringsfeld, H.A., and Barker, C.L. (1941). "Pressure-momentum theory applied to the broad-crested weir." Transactions of the American Society of Civil Engineers, ASCE, Vol. 106, No. 1, pp. 934-946. 

  4. Echeverribar, I., Morales-Hernandez, M., Brufau, P., and Garcia-Navarro, P. (2019). "Use of internal boundary conditions for levees representation: Application to river flood management." Environmental Fluid Mechanics, Vol. 19, No. 5, pp. 1253-1271. 

  5. Garcia-Alen, G., Garcia-Fonte, O., Cea, L., Pena, L., and Puertas, J. (2021). "Modelling weirs in two-dimensional shallow water models." Water, MDPI, Vol. 13, No. 16, 2152. 

  6. Goodarzi, E., Farhoudi, J., and Shokri, N. (2012). "Flow characteristics of rectangular broad-crested weirs with sloped upstream face." Journal of Hydrology and Hydromechanics, Vol. 60, No. 2, pp. 87-100. 

  7. Govinda Rao, N.S., and Muralidhar, D. (1963). "Discharge characteristics of weirs of finite-crest width." La Houille Blanche, Vol. 49, No. 5, pp. 537-545. 

  8. Hager, W., and Schwalt, M. (1994). "Broad-crested weir." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 120, No. 1, pp. 13-26. 

  9. Hargreaves, D.M., Morvan, H.P., and Wright, N.G. (2007). "Validation of the volume of fluid method for free surface calculation: The broad-crested weir." Engineering Applications of Computational Fluid Mechanics, Taylor & Francis, Vol. 1, No. 2, pp. 136-146. 

  10. Henderson, F. (1966). Open channel flow, Macmillan Publishing Co., Inc., NY, U.S. 

  11. Horton, R.E. (1907). Weir experiments, coefficients, and formulas. Water-Supply and Irrigation Paper No. 200, Geological Survey, United States Department of the Interior, Washington, D.C., U.S. 

  12. Hwang, S.-Y. (2015). "A novel scheme to depth-averaged model for analyzing Shallow-water flows over discontinuous topography." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 35, No. 6, pp. 1237-1246. 

  13. Hwang, S.-Y. (2019). "Flow resistance by discontinuous topography in simulating Shallow-water flow." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 39, No. 1, pp. 175-181. 

  14. Hwang, S.-Y., and Kim, H.S. (2021). "Numerical simulation and laboratory experiment of flooding on a perpendicular floodplain with dam-break flows." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 41, No. 3, pp. 219-227. 

  15. Hwang, S.-Y., and Lee, S.H. (2012). "An application of the HLLL approximate Riemann solver to the shallow water equations." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 32, No. 1B, pp. 21-27. 

  16. Jun, K.S. (1996). "A study on unsteady flow model including weir flow simulation." Journal of Korea Water Resources Association, KWRA, Vol. 29, No. 2, pp. 153-165. 

  17. Kim, S. (2013). Analysis on flood-control effect of side-weir detention basin considering the flow pattern over the weir. Master's Thesis, Myongji University. 

  18. Kirkgoz, M.S., Akoz, M.S., and Oner, A.A. (2008). "Experimental and theoretical analyses of two-dimensional flows upstream of broad-crested weirs." Canadian Journal of Civil Engineering, CSP, Vol. 35, No. 9, pp. 975-986. 

  19. Lee, H. (2020). "Implicit discontinuous Galerkin scheme for discontinuous bathymetry in shallow water equations." KSCE Journal of Civil Engineering, KSCE, Vol. 24, No. 9, pp. 2694-2705. 

  20. Lee, K.S., and Lee, S.-T. (1998). "Two-dimensional finite-volume unsteady-flow model for shocks." Journal of Korea Water Resources Association, KWRA, Vol. 31, No. 3, pp. 279-290. 

  21. Linde, T. (2002). "A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws." International Journal for Numerical Methods in Fluids, Vol. 40, No. 3-4, pp. 391-402. 

  22. Morales-Hernandez, M., Murillo, J., and Garcia-Navarro, P. (2013). "The formulation of internal boundary conditions in unsteady 2-d shallow water flows: Application to flood regulation." Water Resources Research, Vol. 49, No. 1, pp. 471-487. 

  23. Moss, W.D. (1970). Flow over a square-edged broad-crested weir. Doctoral dissertation, University of Surrey, Guildford Surrey, U.K. 

  24. Paik, J., and Lee, N.J. (2015). "Numerical modeling of free surface flow over a broad-crested rectangular weir." Journal of Korea Water Resources Association, KWRA, Vol. 48, No. 4, pp. 281-290. 

  25. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1992). Numerical recipes in c: The art of scientific computing, second edition, Cambridge University Press, NY, U.S. 

  26. Prokof'ev, V.A. (2005). "Two-dimensional horizontal numerical model of open flow over a bed with obstacles." Water Resources, Vol. 32, No. 3, pp. 252-264. 

  27. Rafter, G.W. (1900). "On the flow of waer over dams." Transactions of the American Society of Civil Engineers, ASCE, Vol. 44, pp. 220-398. 

  28. Ramamurthy, A.S., Tim, U.S., and Rao, M.V.J. (1988). "Characteristics of square-edged and round-nosed broad-crested weirs." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 114, No. 1, pp. 61-73. 

  29. Sarker, M.A., and Rhodes, D.G. (2004). "Calculation of free-surface profile over a rectangular broad-crested weir." Flow Measurement and Instrumentation, Vol. 15, No. 4, pp. 215-219. 

  30. Schubert, J.E., and Sanders, B.F. (2012). "Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency." Advances in Water Resources, Vol. 41, pp. 49-64. 

  31. Tracy, H.J. (1957). Discharge characteristics of broad-crested weirs. Geological Survey Circular 397, Geological Survey, United States Department of the Interior, Washington, D.C., U.S. 

  32. van Leer, B. (1979). "Towards the ultimate conservative difference scheme. V. a second-order sequel to Godunov's method." Journal of Computational Physics, Vol. 32, No. 1, pp. 101-136. 

  33. Vanden-Broeck, J.-M., and Keller, J.B. (1986). Weir flows. MRC Technical Summary Report, 2919, Mathematics Research Center, University of Wisconsin-Madison, WI, U.S. 

  34. Weiyan, T. (1992). Shallow water hydrodynamics, Elsevier Science Publishers, Amsterdam, The Netherland. 

  35. Willmott, C.J., Robeson, S.M., and Matsuura, K. (2012). "A refined index of model performance." International Journal of Climatology, Vol. 32, No. 13, pp. 2088-2094. 

  36. Zhou, J.G., Causon, D.M., Ingram, D.M., and Mingham, C.G. (2002). "Numerical solutions of the shallow water equations with discontinuous bed topography." International Journal for Numerical Methods in Fluids, Vol. 38, No. 8, pp. 769-788. 

  37. Zhou, J.G., Causon, D.M., Mingham, C.G., and Ingram, D.M. (2001). "The surface gradient method for the treatment of source terms in the shallow-water equations." Journal of Computational Physics, Vol. 168, No. 1, pp. 1-25. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로