$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고성능 역전기투석을 위한 세공충진 음이온교환막의 개발
Development of Pore-Filled Anion-Exchange Membranes for High Performance Reverse Electrodialysis 원문보기

멤브레인 = Membrane Journal, v.32 no.5, 2022년, pp.336 - 347  

김도형 (상명대학교 그린화학공학과) ,  송현비 (상명대학교 그린화학공학과) ,  윤경석 (더블유스코프코리아) ,  강문성 (상명대학교 그린화학공학과)

초록
AI-Helper 아이콘AI-Helper

역전기투석(reverse electrodialysis, RED)은 이온교환막을 격막으로 이용하여 해수와 담수의 농도차로부터 발전하는 유망한 친환경 재생에너지 기술 중 하나이다. 이온교환막은 RED의 성능을 좌우하는 핵심 구성요소로 낮은 전기적 저항, 높은 이온선택투과도, 우수한 내구성 및 저렴한 제조 비용 등의 요구조건을 만족시켜야 한다. 본 연구에서는 다양한 두께 및 기공율을 갖는 다공성 고분자 지지체를 이용하여 세공충진 음이온교환막을 제조하고 이온교환 고분자의 조성과 막 두께가 RED의 발전 성능에 미치는 영향을 조사하였다. 이온교환막의 전기적 저항이 충분히 낮은 경우 RED 발전 성능은 주로 막의 apparent permselectivity에 의해 좌우됨을 확인할 수 있었다. 또한 막의 apparent permselectivity는 IEC, 가교도, 막 두께, 표면 개질 등을 통해 향상시킬 수 있으며 전기적 저항과의 trade off 관계를 고려하여 최적 조건을 찾아야 함을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

Reverse electrodialysis (RED) is one of the promising eco-friendly renewable energy technologies which can generate electricity from the concentration difference between seawater and freshwater by using ion-exchange membranes as a diaphragm. The ion-exchange membrane is a key component that determin...

주제어

참고문헌 (25)

  1. G. Zhen, Y. Pan, X. Lu, Y.-Y. Li, Z. Zhang, C. Niu, G. Kumar, T. Kobayashi, Y. Zhao, and K. Xu, "Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives", Renew. Sust. Energ. Rev., 115, 109392 (2019). 

  2. B. Kang, H. J. Kim, and D. K. Kim, "Membrane electrode assembly for energy harvesting from salinity gradient by reverse electrodialysis", J. Membr. Sci., 550, 286-295 (2018). 

  3. J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water", J. Membr. Sci., 327, 136-144 (2009). 

  4. M. Tawalbeh, A. Al-Othman, N. Abdelwahab, A. H. Alami, and A. G. Olabi, "Recent developments in pressure retarded osmosis for desalination and power generation", Renew. Sust. Energ. Rev., 138, 110492 (2021). 

  5. E. Brauns, "Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output", Desalination, 237, 378-391 (2009). 

  6. E. Guler, R. Elizen, D. A. Vermaas, M. Saakes, and K. Nijmeijer, "Performance-determining membrane properties in reverse electrodialysis", J. Membr. Sci., 446, 266-276 (2013). 

  7. J. G. Hong and Y. Chen, "Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation", J. Membr. Sci., 460, 139-147 (2014). 

  8. E. Guler, W. V. Baak, M. Saakes, and K. Nijmijer, "Monovalent-ion-selective membranes for reverse electrodialysis" J. Membr. Sci., 455, 254-270 (2014). 

  9. V. Sarapulova, I. Shkorkina, S. Mareev, N. Pismenskaya, N. Kononenko, C. Larchet, and L. Dammak, V. Nikonenko, "Transport characteristics of Fujifilm ion-exchange membranes as compared to homogeneous membranes АМХ and СМХ and to heterogeneous membranes MK-40 and MA-41", Membranes, 9, 84 (2019). 

  10. T. Yamaguchi, S. Nakao, and S. Kimura, "Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures", Macromolecules, 24, 5522-5527 (1991). 

  11. T. Yamaguchi, F. Miyata, and S. Nakao, "Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell" J. Membr. Sci., 214, 283-292 (2003). 

  12. D.-H. Kim, J.-S. Park, M. Choun, J. Lee, and M.-S. Kang, "Pore-filled anion-exchange membranes for electrochemical energy conversion applications", Electrochim. Acta, 222, 212-220 (2016). 

  13. D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43-54 (2016). 

  14. D.-H. Kim, J.-S. Park, and M.-S. Kang, "Controlling water splitting characteristics of anionexchange membranes by coating imidazolium polymer", Membr. J., 25, 152-161 (2015). 

  15. S. C. Yang, Y.-W. Choi, J. Choi, N. Jeong, H. Kim, J.-Y. Nam, and H. Jeong, "R2R fabrication of pore-filling cation-exchange membranes via one-time impregnation and their application in reverse electrodialysis" ACS Sustainable Chem. Eng., 7, 12200-12213 (2019). 

  16. Y. J. Lee, M. S. Cha, S.-G. Oh, S. So, T.-H. Kim, W. S. Ryoo, Y. T. Hong, and J. Y. Lee, "Reinforced anion exchange membrane based on thermal cross-linking method with outstanding cell performance for reverse electrodialysis", RSC Adv., 9, 27500-27509 (2019). 

  17. J. Choi, S. C. Yang, N.-J. Jeong, H. Kim, and W.-S. Kim, "Fabrication of an anion-exchange membrane by pore-filling using catechol-1,4-diazabicyclo-[2,2,2]octane coating and its application to reverse electrodialysis", Langmuir, 34, 10837-10846 (2018). 

  18. H.-K. Kim, M.-S. Lee, S.-Y. Lee, Y.-W. Choi, N.-J. Jeong, and C.-S. Kim, "High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer", J. Mater. Chem. A, 3, 16302-16306 (2015). 

  19. K. F. L. Hagesteijn, S. Jiang, and B. P. Ladewig, "A review of the synthesis and characterization of anion exchange membranes", J. Mater. Sci., 53, 11131-11150 (2018). 

  20. L. Gomez-Coma, V. M. Ortiz-Martinez, F. J. Carmona, L. Palacio, P. Pradanos, M. Fallanza, A. Ortiz, R. Ibanez, and I. Ortiz, "Modeling the influence of divalent ions on membrane resistance and electric power in reverse electrodialysis", J. Membr. Sci., 592, 117385 (2019). 

  21. D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129-137 (2017). 

  22. G. M. Geise, H. J. Cassady, D. R. Paul, B. E. Logan, and M. A. Hickner, "Specific ion effects on membrane potential and the permselectivity of ion exchange membranes", Phys. Chem., 16, 21673-21681 (2014). 

  23. S. K. Jeong, J. S. Lee, S. H. Woo, J. A. Seo, and B. R. Min, "Characterization of anion exchange membrane containing epoxy ring and C-Cl bond quaternized by various amine groups for application in fuel cells", Energies, 8, 7084-7099 (2015). 

  24. H. A. Ezzeldin, A. Apblett, and G. L. Foutch, "Synthesis and properties of anion exchangers derived from chloromethyl styrene covininylbenzene and their use in water treatment", Int. J. Polym. Sci., 2010, Article ID 684051 (2010). 

  25. D.-H. Kim, J.-H. Park, S.-J. Seo, J.-S. Park, S. Jung, Y. S. Kang, J.-H. Choi, and M.-S. Kang, "Development of thin anion-exchange pore-filled membranes for high diffusion dialysis performance", J. Membr. Sci., 447, 80-86 (2013). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로