$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수직농장에서 자란 케일(Brassica oleracea var. acephala) 품종에 따른 글루코시놀레이트 함량의 변화 및 전사체 분석
Glucosinolate Content Varies and Transcriptome Analysis in Different Kale Cultivars (Brassica oleracea var. acephala) Grown in a Vertical Farm 원문보기

생물환경조절학회지 = Journal of bio-environment control, v.31 no.4, 2022년, pp.332 - 342  

응웬티김로안 (경상국립대학교 원예과학부) ,  이가운 (경상국립대학교 생명자원과학과) ,  조정수 (경북대학교 농업생명과학대학 원예과학과 농업과학기술연구원) ,  이준구 (전북대학교 농업생명과학대학 원예학과) ,  이신우 (경상국립대학교 항노화신소재과학과) ,  손기호 (경상국립대학교 원예과학부 생명자원과학과)

초록
AI-Helper 아이콘AI-Helper

케일(Brassica oleracea var. acephala)은 필수 아미노산, 비타민, 미네랄과 같은 수많은 영양소를 함유하고 특히 글루코시놀레이트가 풍부하기 때문에 전 세계적으로 가장 많이 소비되는 잎 채소 중 하나이다. 그러나 케일 품종 간의 글루코시놀레이트 합성과 관련된 유전자 발현에 대한 연구는 미비한 실정이다. 본 연구에서는 전사체대사체 분석을 사용하여 식물공장에서 재배된 녹색(만추 및 맛짱) 및 적색 케일 품종(적곱슬)을 포함한 3 가지 케일 품종에서 글루코시놀레이트를 조사하였다. 재배 후 6주된 녹색 케일 품종의 생육 및 발달이 적색 케일 품종에 비해 높았다. High-performance liquid chromatography (HPLC) 분석에서 7가지 글루코시놀레이트를 분석하였다; 만추 품종에서는 5종의 글루코시놀레이트가, 맛짱과 적곱슬 품종에서는 4종의 글루코시놀레이트가 분류되었다. Glucobrassicin은 3가지 케일 품종에서 가장 높은 글루코시놀레이트 였다. 총 글루코시놀레이트 함량은 적곱슬 품종에서 가장 높았다. 전사체 분석에서는 8개의 유전자가 글루코시놀레이트 합성에 관여됨을 확인할 수 있었다. 이러한 결과는 케일 품종에 따라 글루코시놀레이트 함량과 축적 패턴이 다르다는 것을 시사한다.

Abstract AI-Helper 아이콘AI-Helper

Kale (Brassica oleracea var. acephala) is one of the most frequently consumed leafy vegetables globally, as it contains numerous nutrients; essential amino acids, phenolics, vitamins, and minerals, and is particularly rich in glucosinolates. However, the differences in the biosynthesis of glucosinol...

주제어

참고문헌 (33)

  1. Awasthi S., and N.T. Saraswathi 2016, Elucidating the molecular interaction of sinigrin, a potent anticancer glucosinolate from cruciferous vegetables with bovine serum albumin: effect of methylglyoxal modification. J Biomol Struct Dyn 34:2224-2232. doi:10.1080/07391102.2015.1110835 

  2. Ayaz F.A., R.H. Glew, M. Millson, H.S. Huang , L.T. Chuang, C. Sanz , and S. Hayirlioglu-Ayaz 2006, Nutrient contents of kale (Brassica oleraceae L. var. acephala DC.). Food Chem 96:572-579. doi:10.1016/j.foodchem.2005.03.011 

  3. Bak S., and R. Feyereisen 2001, The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108-118. doi:10.1104/pp.127.1.108 

  4. Burger J., and G.E. Edwards 1996, Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus green leaf coleus varieties. Plant Cell Physiol 37:395-399. doi:10.1093/oxfordjournals.pcp.a028959 

  5. Grubb C.D., and S. Abel 2006, Glucosinolate metabolism and its control. Trends Plant Sci 11:89-100. doi:10.1016/j.tplants.2005.12.006 

  6. Grubb C.D., B.J. Zipp, J. Kopycki, M. Schubert, M. Quint, E. K. Lim, D.J. Bowles, M.S.C. Pedras, and S. Abel 2014, Comparative analysis of Arabidopsis UGT 74 glucosyltransferases reveals a special role of UGT 74C1 in glucosinolate biosynthesis. Plant J 79:92-105. doi:10.1111/tpj.12541 

  7. Grubb C.D., B.J. Zipp, J. Ludwig-Muller, M.N. Masuno, T.F. Molinski, and S. Abel 2004, Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893-908. doi:10.1111/j.1365-313X.2004.02261.x 

  8. Herr I., and M.W. Buchler 2010, Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:377-383. doi:10.1016/j.ctrv.2010.01.002 

  9. Hull A.K., R. Vij, and J.L. Celenza 2000, Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci 97:2379-2384. doi:10.1073/pnas.040569997 

  10. Jahangir M., H.K. Kim, Y.H. Choi, and R. Verpoorte 2009, Health-affecting compounds in Brassicaceae. Compr Rev Food Sci Food Saf 8:31-43. doi:10.1111/j.1541-4337.2008.00065.x 

  11. Jeon J., J.K. Kim, H. Kim H,Y.J. Kim, Y.J. Park, S.J. Kim, C.S. Kim, and S.U. Park 2018, Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings. Food Chem 241:7-13. doi:10.1016/j.foodchem.2017.08.067 

  12. Kim K.H., and S.O. Chung 2018, Comparison of plant growth and glucosinolates of Chinese cabbage and kale crops under three cultivation conditions. J Biosyst Eng 43:30-36. doi:10.5307/JBE.2018.43.1.030 

  13. Kozai T. 2013, Sustainable plant factory: Closed plant production systems with artificial light for high resource use efficiencies and quality produce. Acta Hortic 1004:27-40. doi:10.17660/ActaHortic.2013.1004.2 

  14. Lannenpaa M. 2014, Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation. Plant Cell Rep 33:1377-1388. doi:10.1007/s00299-014-1623-6 

  15. Lee G.J, J.W. Heo, C.R. Jung, H.H. Kim, J.S. Jo, J.G. Lee, G.J. Lee, S.Y. Nam, and E.Y. Hong 2016, Effects of artificial light sources on growth and glucosinolate contents of hydroponically grown kale in plant factory. Protected Hort Plant Fac 25:77-82. (in Korean) doi:10.12791/KSBEC.2016.25.2.77 

  16. Lee H.H., S.C. Yang, M.K. Lee, D.K. Ryu, S. Park, S.O. Chung, S.U. Park, and S.J. Kim 2015, Effect of developmental stages on glucosinolate contents in kale (Brassica oleracea var. acephala). Hortic Sci Technol 33:177-185. (in Korean) doi:10.7235/hort.2015.14017 

  17. Liu Z., A.H. Hirani, P.B.E. McVetty, F. Daayf, C.F. Quiros, and G. Li 2012, Reducing progoitrin and enriching glucoraphanin in Braasica napus seeds through silencing of the GSL-ALK gene family. Plant Mol Biol 79:179-189. doi:10.1007/s11103-012-9905-2 

  18. Lu N., E.L. Bernardo, C. Tippayadarapanich, M. Takagaki, N. Kagawa, and W. Yamori 2017, Growth and accumulation of secondary metabolites in perilla as affected by photosynthetic photon flux density and electrical conductivity of the nutrient solution. Front Plant Sci 8:708. doi:10.3389/fpls.2017.00708 

  19. Mayne S.T. 1996, Beta-carotene, carotenoids, and disease prevention in humans. FASEB J 10:690-701. doi:10.1096/fasebj.10.7.8635686 

  20. Mikkelsen M.D., C.H. Hansen, U. Wittstock, B.A. Halkier 2000, Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712-33717. doi:10.1074/jbc.M001667200 

  21. Mikkelsen M.D., P. Naur, and B.A. Halkier 2004, Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37:770-777. doi:10.1111/j.1365-313X.2004.02002.x 

  22. Naur P., B.L. Petersen, M.D. Mikkelsen, S. Bak, H. Rasmussen, C.E. Olsen, and B.A. Halkier 2003, CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63-72. doi:10.1104/pp.102.019240 

  23. Neugart S., S. Baldermann, F.S. Hanschen, R. Klopsch, M. Wiesner-Reinhold, and M. Schreiner 2018, The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci Hortic 233:460-478. doi:10.1016/j.scienta.2017.12.038 

  24. Nguyen T.K.L., and M.M. Oh 2021, Physiological and biochemical responses of green and red perilla to LED-based light. J Sci Food Agric 101:240-252. doi:10.1002/jsfa.10636 

  25. Palani K., B. Harbaum-Piayda, D. Meske, J.K. Keppler, W. Bockelmann, K.J. Heller, and K. Schwarz 2016, Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Food Chem 190:755-762. doi:10.1016/j.foodchem.2015.06.012 

  26. Piotrowski M., A. Schemenewitz, A. Lopukhina, A. Muller, T. Janowitz, E.W. Weiler, and C. Oecking 2004, Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem 279:50717-50725. doi:10.1074/jbc.M407681200 

  27. Sawada Y., A. Kuwahara, M. Nagano, T. Narisawa, A. Sakata, K. Saito, and M. Y. Hirai 2009a, Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant Cell Physiol 50:1181-1190. doi:10.1093/pcp/pcp079 

  28. Sawada Y., K. Toyooka, A. Kuwahara, A. Sakata, M. Nagano, K. Saito, and M.Y. Hirai 2009b, Arabidopsis bile acid:sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis. Plant Cell Physiol 50:1579-1586. doi:10.1093/pcp/pcp110 

  29. Smillie R.M., and S.E. Hetherington 1999, Photoabatement by anthocyanin shields photosynthetic systems from light stress. Photosynthetica 36:451-463. doi:10.1023/A:1007084321859 

  30. Sonderby I.E., F. Geu-Flores, and B.A. Halkier 2010, Biosynthesis of glucosinolates-gene discovery and beyond. Trends Plant Sci 15:283-290. doi:10.1016/j.tplants.2010.02.005 

  31. Waterland N.L., Y. Moon, J.C. Tou, D.A. Kopsell, M.J. Kim, and S. Park 2019, Differences in leaf color and stage of development at harvest influenced phytochemical content in three cultivars of kale (Brassica oleracea L. and B. napus). J Agric Sci 11:14-21. doi:10.5539/jas.v11n3p14 

  32. Yan X., and S. Chen 2007, Regulation of plant glucosinolate metabolism. Planta 226:1343-1352. doi:10.1007/s00425-007-0627-7. 

  33. Yi G.E., A.H.K. Robin, K. Yang, J.I. Park, J.G. Kang, T.J. Yang, and I.S. Nou 2015, Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules 20:13089-13111. doi:10.3390/molecules200713089 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로