$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

대목 종류에 따른 방울토마토 생장과 수량 증가
Improving Growth and Yield in Cherry Tomato by Using Rootstocks 원문보기

생물환경조절학회지 = Journal of bio-environment control, v.30 no.3, 2021년, pp.196 - 205  

이혜원 (국립한국농수산대학 채소학과) ,  이준구 (전북대학교 농업생명과학대학 원예학과) ,  홍규현 (국립한국농수산대학 채소학과) ,  권덕호 (국립한국농수산대학 채소학과) ,  조명철 (농촌진흥청 국립원예특작과학원 채소과) ,  황인덕 (부농종묘 육종연구소) ,  안율균 (국립한국농수산대학 채소학과)

초록

본 연구는 대목 종류에 따라 나타나는 방울토마토 수량 차이를 생장상의 변화와 광합성 효율을 통해 비교분석하고자 수행하였다. 접수 '노나리'와 대목 4종류('파워가드', 'T1', 'L1', 'B.blocking')을 사용하여 접목한 4개의 처리구와 '노나리'를 접목하지 않은 1개의 처리구로 실험에 사용하였다. 방울토마토 생육후기인 5월의 주 당 평균 총 수확량을 조사한 결과 대목 'B.blocking'을 사용한 처리구는 417.5g으로 가장 높은 수확량을 보였고 대목을 사용하지 않은 처리구가 354.2g으로 가장 낮은 수확량을 보였다. 정식 252일 후의 개화위치를 조사한 결과 대목 'B.blocking'을 사용한 처리구는 14cm 내지 17cm의 개화위치를 보인 반면 대목을 사용하지 않은 처리구는 10cm 내지 14cm의 개화위치를 보였다. 정식 266일 후 생장강도를 조사한 결과 대목 'T1', 'L1', 'B.blocking'을 사용한 처리구는 10mm대의 생장강도를 보인 반면 대목을 사용하지 않은 처리구의 생장강도는 8.43mm로 낮은 값을 보였다. 대목을 사용한 처리구는 생육후기까지 생장의 균형을 맞춰 높은 수확량을 보인 반면 대목을 사용하지 않은 처리구는 세력이 저하되어 수확량이 감소한 것으로 판단된다. 엽록소 형광변수는 대목을 사용한 처리구가 대목을 사용하지 않은 처리구보다 높았다. 이상으로 방울토마토 접목묘를 사용하는 것이 생육후기까지 생장의 균형을 유지하고 광합성 효율이 높아 수량이 높은 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

This research was conducted in order to analyze the difference in yield through the changes in growth and measuring the photosynthesis efficiency in cherry tomatoes. Seedlings of cherry tomato 'Nonari' were used as scion and non-grafted control, while 4 different grafted tomatoes 'Powerguard', 'T1',...

주제어

참고문헌 (33)

  1. Amthor J.S. 2007, Improving photosynthesis and yield potential. Improvement of Crop Plants for Industrial End Uses, pp 27-58. doi:10.1007/978-1-4020-5486-0 

  2. Bletsos F.A. 2003, Effect of grafting on the growth and yield of eggplant plants and the control of Verticillium wilt. HortScience 38:183-186. doi:10.21273/HORTSCI.38.2.183 

  3. Chaplin M.H., and M.N. Westwood 1980, Nutritional status of 'Bartlett' pear on Cydonia and Pyrus species rootstocks. J Am Soc Hort Sci 105:60-63. 

  4. Ennis I.L., W.T. Bussell, J.R. Lewthwaite, C.M. Triggs, Z. Egginton, and S. McKennie 2005, Growth and yield measurements to detect treatment differences in tomato crops in modern greenhouses. Agronomy N Z 35. 

  5. Fernandez-Garcia N., A. Cerda, and M. Carvajal 2003, Grafting, a useful technique for improving salinity tolerance of tomato?. Acta Hort 609:251-256. doi:10.17660/ActaHortic.2003.609.37 

  6. Govindjee 1995, Sixty-three years since Kautsky: chlorophyll a fluorescence. J Aust Plant Physiol 22:131-160. doi:10.1071/PP9950131 

  7. Iacono F., A. Buccella, and E. Peterlunger 1998, Water stress and rootstock influence on leaf gas exchange of grafted and ungrafted grapevines. Scientia Horticulturae 75:27-39. doi: 10.1016/S0304-4238(98)00113-7 

  8. Kang H.G., T.S. Kim, S.H. Park, T.W. Kim, and S.Y. Yoo 2016, Photochemical Index Analysis on Different Shading Level of Garden Plants. Korean J Environ Biol 34:264-271. (in Korean) doi:10.11626/KJEB.2016.34.4.264 

  9. Kato T., and H. Lou 1989, Effects of rootstock on the yield, mineral nutrition and hormone [cytokinins, gibberellins and auxins] level in xylem sap in eggplant. J Jap Soc Hort Sci 58:345-352. 

  10. Khah E.M., E. Kakava, A. Mavromatis, D. Chachalis, and C. Goulas 2006, Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. Journal of Applied Horticulture 8:3-7. doi:10.37855/jah.2006.v08i01.01 

  11. Kim S.E., M.Y. Lee, M.H. Lee, S.Y. Sim, and Y.S. Kim 2014, Optimal Management of tomato leaf pruning in rockwool culture. Hort Environ Biotechnol 55:445-454. (in Korean) doi:10.1007/s13580-014-0049-y 

  12. Kim S.E., S.Y Sim, S.D. Lee, and Y.S. Kim 2010, Appropriate root-zone temperature control in perlite bag culture of tomato during winter season. Kor J Hort Sci Technol 28:783-789. (in Korean) 

  13. Lee C.Y. 2015, A study on the growth diagnosis system for tomato. Journal of the Korea Academia-Industrial cooperation Society. 16:8673-8678. (in Korean) doi:10.5762/KAIS.2015.16.12.8673 

  14. Lee H., K.H. Hong, D.H. Kwon, M.C. Cho, J.G. Lee, I.Hwang, and Y.K. Ahn 2020, Changes of growth and yield by using rootstocks in tomato. Protected Horticulture and Plant Factory 29:456-463. (in Korean) doi:10.12791/KSBEC.2020.29.4.456 

  15. Lee J.M., and M. ODA 2003, Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews 28:61-124. doi:10.1002/9780470650851.ch2 

  16. Leonardi C., and F. Giuffrida 2006, Variation of plant growth and macronutrient uptake in grafted tomatoes and eggplants on three different rootstocks. Europ J Hort Sci 71:97-101. doi:10.2307/24126634 

  17. Liu Y.F., H.Y. Qi, C.M. Bai, M.F. Qi, C.Q. Xu, J.H. Hao, Y. Li, and T.L. Li 2011, Grafting helps improve photosynthesis and carbohydrate metabolism in leaves of muskmelon. Int J Biol Sci 7:1161-1170. doi:10.7150/ijbs.7.1161 

  18. Monte J.A., D.F. Carvalho, L.O. Medici, L.D.B. Silva, and C. Pimentel 2013, Growth analysis and yield of tomato crop under different irrigation depths. R Bras Eng Agric Ambiental 17:926-931. doi:10.1590/S1415-43662013000900003 

  19. OMAFRA 2010, Growing greenhouse vegetables in ontario (Publication 836). Ontario Ministry of Agriculture, Food and Rural Affairs, Toronto, Canada, pp 2-66. 

  20. Passam H.C., M. Stylianou, and A. Kotsiras 2005, Performance of eggplant grafted on tomato and eggplant rootstocks. Europ J Hort Sci 70:130-134. 

  21. RDA 2018, TOMATO. Rural Development Administration, Jeonju, Korea, pp 38. (in Korean) 

  22. Romano D., and A. Paratore 2001, Effects of grafting on tomato and eggplant. Acta Hort 559. doi:10.17660/ActaHortic.2001.559.21 

  23. Schwarz D., Y. Rouphael, G. Colla, and J.H. Venema 2010, Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae 127:162-171. doi:10.1016/j.scienta.2010.09.016 

  24. Soe D.W., Z.Z. Win, A.A. Thwe, and K.T. Myint 2018, Effects of different rootstocks on plant growth, development and yield of grafted tomato (Lycopersicon esculentum Mill.). Journal of Agricultural Research 5:30-38. 

  25. Stanghellini C., B.V. Ooster, and E. Heuvelink 2019, Green-house horticulture Technology for optimal crop production. Wageningen Academic Publishers, Wageningen, The Netherlands, pp 40. doi:10.3920/978-90-8686-879-7 

  26. Stradiot P., and P. Battistel 2003, Improved plant management with localised crop heating and advice on distance in the mediterranean climate. Acta Hort 614:461-467. doi:10.17660/ActaHortic.2003.614.69 

  27. Strasser R.J., A. Srivastava, and M. Tsimilli-Michael 2000, The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M., Pathre U., Mohanty P. (eds.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor and Francis, London, pp 445-483. 

  28. Tiedemann R. 1989, Graft union development and symplastic phloem contact in the heterograft Cucumis sativus on Cucurbita ficifolia. Journal of Plant Physiology 134:427-440. 

  29. Turhan A., N. Ozmen, M.S. Serbeci, and V. Seniz 2011, Effects of grafting on different rootstocks on tomato fruit yield and quality. Hort Sci 38:142-149. doi:10.17221/51/2011-hortsci 

  30. White R.A.J. 1963, Grafted greenhouse tomatoes give heavier crops. N Z J Agr Res 106:247-248. 

  31. Yeoman M.M., and R. Brown 1976, Implications of the formation of the graft union for organisation in the intact plant. Ann Bot 40:1265-1276. 

  32. Yoo S.Y., Y.H. Lee, S.H. Park, K. Choi, J.Y. Park, A.R. Kim, S.M. Hwang, M.J. Lee, T.S. Ko, and T.W. Kim 2013, Photochemical response analysis on drought stress for red pepper (Capsiumannuum L.). Korean J Soil Sci Fert 46:659-664. (in Korean) doi:10.7745/KJSSF.2013.46.6.659 

  33. Zivcak M., M. Brestic, K. Olsovska, and P. Slamka 2008, Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ 54:133-139. doi: 10.17221/392-PSE 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로