$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 금속회수공정에서 발생되는 Na2SO4 폐액으로 부터 NaOH 및 H2SO4 재생을 위한 Electro-membrane 응용
Application of Electro-membrane for Regeneration of NaOH and H2SO4 from the Spent Na2SO4 Solutions in Metal Recovery Process 원문보기

Resources recycling = 자원리싸이클링, v.31 no.5, 2022년, pp.3 - 19  

조연철 (대진대학교 신소재공학과) ,  김기훈 (대진대학교 신소재공학과) ,  안재우 (대진대학교 신소재공학과)

초록
AI-Helper 아이콘AI-Helper

전기막(Electro-membrane) 기술은 전기투석(ED) 및 바이폴라 전기투석(BMED)과 같이 선택적 투과성을 갖는 이온교환막을 사용하여 전기에너지에 의하여 수용액 내의 물질을 분리·정제하는 공정이다. 전기막(Electro-membrane) 기술은 공정 중에 부산물이 발생하지 않고 회수된 염기나 산을 공정 중에 재사용할 수 있어 환경 친화적인 기술로 주목받고 있다. 본고에서는 전기분리막 기술인 ED와 BMED 기술의 원리 및 셀(Cell) 구성에 따른 여러 가지 특성 및 문제점 등에 대해 조사하고, 특히 금속회수 공정 중 다량 발생되고 있는 황산나트륨(Na2SO4) 폐액 처리와 관련된 연구사례들을 조사·분석하였다.

Abstract AI-Helper 아이콘AI-Helper

Electro-membrane technology is a process for separating and purifying substances in aqueous solution by electric energy using an ion exchange membrane with selective permeability, such as electrodialysis (ED) and bipolar electrodialysis (BMED). Electro-membrane technology is attracting attention as ...

주제어

참고문헌 (60)

  1. O.S.L. Bruinsma, D.J. Branken, T.N. Lemmer, et al., 2021 : Sodium sulfate splitting as zero brine process in a base metal refinery: Screening and optimization in batch mode, Desalination 2021, 511, 115096. 

  2. Matinde, E., G.S. Simate, S. Ndlovu, 2018 : Mining and metallurgical wastes: A review of recycling and re-use practices, J. S. Afr. Inst. Min. Metall., 118, pp.825-844. 

  3. Ahmed, S., Nelson, P.A., Gallagher, K.G., et al., 2017 : Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries, J. Power Sources 2017, 342, pp.733-740. 

  4. Sakunai, T., Ito, L. & Tokai, A., 2021 : Environmental impact assessment on production and material supply stages of lithium-ion batteries with increasing demands for electric vehicles, J. of Mater Cycles Waste Management, 23, pp.470-479. 

  5. Mani, K.N., 1991 : Electrodialysis water splitting technology, J. Membr. Sci., 58, pp.117-138. 

  6. Yang C., Hu Y., Cao L., et al., 2014 : Performance Optimization of an Electromembrane Reactor for Recycling and Resource Recovery of Desulfurization Residuals, AIChE Journal, 60, pp.2613-2624. 

  7. Van der Bruggen, B., Lejon, L., Vandecasteele, C., 2003 : Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes, Environ. Sci. Technol., 37, pp.3733-3738. 

  8. Atia, T.A., Elia, G., Hahn, R., et al., 2019 : Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: Towards zero-waste process and metal recycling in advanced batteries, J. Energy Chem, 35, pp.220-227. 

  9. Strathmann, H., 2010 : Electrodialysis, a mature technology with a multitude of new applications, Desalination, 264, pp.268-288. 

  10. C. Huang., T. Xu., 2006 : Electrodialysis with bipolar membranes for sustainable development, Environ. Sci. Technol., 40(17), pp.5223-5243. 

  11. Kincl, J., Jiricek, T., Feher, J., et al., 2017 : Electromembrane Processes in Mine Water Treatment, Mine Water and Circular Economy, IMWA, pp.1154-1161. 

  12. R. Parnamae., S. Mareev., V. Nikonenko., et al., 2020 : Bipolar membranes: A review on principles, latest developments, and applications, Journal of Membrane Science, Elsevier, Amsterdam. 

  13. X. Tongwen, 2002 : Electrodialysis processes with bipolar membranes (EDBM) in environmental protection - a review, Resour. Conserv. Recycl., 37, pp.1-22. 

  14. Strathmann H., 2004 : Ion-Exchange Membrane Separation Processes., Membrane Science and Technology, Volume 9, Elsevier, Amsterdam. 

  15. Yeonchul Cho, Kihun Kim, Jaewoo Ahn, et al., 2021 : A Study on Lithium Hydroxide Recovery Using Bipolar Membrane Electrodialysis, Korean J. Met. Mater., 59(4), pp.223-232. 

  16. Jueun Lee, Hongil So, Yeonchul Cho, et al., 2019 : A Study on the Separation and Concentration of Li from Li-Containing Waste Solutions by Electrodialysis, Korean J. Met. Mater., 57(10), pp.656-662. 

  17. Luigi Gurreri, Alessandro Tamburini, Andrea Cipollina, 2020 : Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery : A Systematic Review on Progress and Perspectives, Membranes, 10(7), pp.1-93. 

  18. J. Jorissen., K. H. Simmrock, 1991 : The behaviour of ion exchange membranes in electrolysis and electrodialysis of sodium sulphate, J. Applied Electrochemistry, 21, pp.869-876. 

  19. M. Rakib., Viers Moceteguy., E. Petit., et al., 1999 : Behaviour of Nafion 350 membrane in sodium sulfate electrochemical splitting: continuous process modelling and pilot scale tests, J. Appl. Electrochem., 29, pp.1439-1448. 

  20. Tzanetakis. N., Taama. W., Scott. K., 2002 : Salt splitting in a three-compartment membrane electrolysis cell, Filtration & Separation, 39(3), pp.30-38. 

  21. F. ohman., L. Delin, 2014 : Electrolysis of sodium sulphate - efficient use of saltcake and ESP dust in pulp mills, Aforsk Referensnr, pp.13-347. 

  22. B. Pisarska., H. Jaroszek., W. Mikolajczak, et al., 2017 : Application of electro-electrodialysis for processing of sodium sulphate waste solutions containing organic compounds: preliminary study, J. Clean. Prod., pp. 3741-3747. 

  23. B. Pisarska., W. Mikolajczak., H. Jaroszek, 2017 : Processing of sodium sulphate solutions using the EED method: from a batch toward a continuous process, Polish Journal of Chemical Technology, 19(1), pp.54-58. 

  24. Seung-Hyeon Moon, 2021 : Electrochemical Processes of Ion Exchange Membranes, GIST Press, Gwangju. 

  25. Campione, A., Gurreri, L., Ciofalo, M., et al., 2018 : Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications, Desalination, 434, pp.121-160. 

  26. Sajjad, A.-A., Yunus, M.Y.B.M., Azoddein, A.A.M., et al., 2020 : Electrodialysis Desalination for Water and Wastewater: A Review, Chem. Eng. J., 380(122231), pp.1-54. 

  27. Lindstrand, V., Sundstrom, G., Jonsson, A.S., 2000 : Fouling of electrodialysis membranes by organic substances, Desalination, 128, pp.91-102. 

  28. H.J. Lee, S.H. Moon, S.P. Tsai, 2002 : Effects of pulsed electric fields on membrane fouling in electrodialysis of NaC1 solution containing humate, Sep. Purif. Technol., 27, pp.89-95. 

  29. N. Cifuentes-Araya., G. Pourcelly., L. Bazinet, 2011 : Impact of pulsed electric field on electrodialysis process performance and membrane fouling during consecutive demineralization of a model salt solution containing a high magnesium/calcium ratio, J. Colloid Interface Sci., 361(1), pp.79-89. 

  30. G. Pourcelly, 2002 : Electrodialysis with Bipolar Membranes: Principles, Optimization, and Applications, Russian Journal of Electrochemistry, 38(8), pp. 919-926. 

  31. I. Miesiac, B. Rukowicz, 2002 : Bipolar Membrane and Water Splitting in Electrodialysis, Electrocatalysis, 13, pp.101-107. 

  32. Deuk Ju Kim, Sang Yong Nam, 2013 : Development and Application Trend of Bipolar Membrane for Electrodialysis, Membrane Journal, 23(5), pp.319-331. 

  33. Jan Kroupa, Jan Kincl, Jiri Cak, 2014 : Recovery of H2SO4 and NaOH from Na2SO4 by electrodialysis with heterogeneous bipolar membrane, Desalination and Water Treatment, pp.1-9. 

  34. Jan Kroupa, 2019 : Study of Electrodialysis with Bipolar Membranes, Theses of the Doctoral Dissertation. 

  35. Mani, K.N., Chlanda., F.P., Byszewski. C.H., 1988 : Aquatech membrane technology for recovery of acid/base values from salt streams, Desalination, 68, pp.149-166. 

  36. Mani, K.N., 1991 : Electrodialysis water splitting technology, J. Membr. Sci., 58, pp.117-138. 

  37. Didier Raucq, Gerald Pourcelly, Claude Gavach, 1993 : Production of sulphuric acid and caustic soda from sodium sulphate by electromembrane processes, Comparison between electroelectrodialysis and electrodialysis on bipolar membrane, Desalination, 91, pp.163-475. 

  38. M. Paleologou, A. Thibault, P-Y. Wong, et al., 1997 : Enhancement of the current efficiency for sodium hydroxide production from sodium sulphate in a two-compartment bipolar membrane electrodialysis system, Separation and Purification Technology, 11, pp.159-171. 

  39. Harato, T., Smith, P., Oraby, E., 2012 : Recovery of soda from bauxite residue by acid leaching and electrochemical processing, Proceedings of the 9th International Alumina Quality Workshop, pp.193-201. 

  40. Y. Wei, C. Li, Y. Wang, et al., 2012 : Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED), Separation and Purification Technology, 86, pp.49-54. 

  41. Y. Wei, Y. Wang, X. Zhang, et al., 2013 : Comparative study on regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED) and electroelectrodialysis(EED), Separation and Purification Technology, 118, pp.1-5. 

  42. Kroupa, J., Cakl, J., Kincl, J., 2015 : Increase the Concentration of Products from Electrodialysis with Heterogeneous Bipolar Membrane. 

  43. Kuldeep, W. D. Badenhorst, P. Kauranen, et al., 2021 : Bipolar Membrane Electrodialysis for Sulfate Recycling in the Metallurgical Industries, Membranes, 11(9), 718. 

  44. Gao W., Fang Q., Yan H., et al., 2021 : Recovery of Acid and Base from Sodium Sulfate Containing Lithium Carbonate Using Bipolar Membrane Electrodialysis, Membranes, 11(152), pp.1-14. 

  45. Jiang G., Li H., Xu M., et al., 2021 : Sustainable reverse osmosis, electrodialysis and bipolar membrane electrodialysis application for cold-rolling wastewater treatment in the steel industry, J. Water Process. Eng., 40, 101968. 

  46. Ming Zhu, Binghui Tian, Sheng Luo, et al., 2022 : High-value conversion of waste Na2SO4 by a bipolar membrane electrodialysis metathesis system, Resources, Conservation and Recycling, 186, pp.7-29. 

  47. Reig, M., Valderrama, C., Gibert, O., et al., 2016 : Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment: Monovalentdivalent ions separation and acid and base production, Desalination, 399, pp.88-95. 

  48. Anh T.K. Tran, Priyanka Mondal, JiuYang Lin, et al., 2015 : Simultaneous regeneration of inorganic acid and base from a metal washing step waste water by bipolarmembrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor, Journal of Membrane Sci. 473, pp.118-127. 

  49. Jae-Hun Kim, Seungbo Ryu, Seung-Hyeon Moon, 2020 The Fabrication of Ion Exchange Membrane and Its Application to Energy Systems, Membrane Journal, 30(2), pp.79-96. 

  50. F. Hanada, K. Hirayama, N. Ohmura, et al., 1993. US. 05221455. 

  51. R. Fu, T. Xu, G. Wang, et al., 2003 : PEG-catalytic water splitting in the interface of a bipolar membrane, J. Colloid Interface Sci., 263, pp. 386-390. 

  52. R. Q. Fu, Y. H. Xue, T. W. Xu, et al., 2005 : Fundamental studies on the intermediate layer of a bipolar membrane part IV. Effect of polyvinyl alcohol (PVA) on water dissociation at the interface of a bipolar membrane, J. Colloid Interface Sci., 285, pp.281-287. 

  53. J. Balster, R. Sumbharaju, S. Srikantharajah, et al., Asymmetric bipolar membrane: A tool to improve product purity, J. Membr. Sci., 287, pp. 246-256. 

  54. T. Xu, 2002 : Effect of asymmetry in a bipolar membrane on water dissociation - a mathematical analysis, Desalination, 150, pp.65-74. 

  55. A.J. Cisar, A. Gonzalez-Martin, G.D. Hitchens, et al., 1994. US. 5635039A. 

  56. G.D. Hitchems, H. Jabs, C.C. Andrews, et al., 1999. US. 6103078A. 

  57. J. Hawkins, E. Nyberg, G. Kayser, 2004. US. 7959780B2. 

  58. C. Shen, R. Wycisk, P.N. Pintauro, 2017 : High performance electrospun bipolar membrane with a 3D junction, Energy Environ. Sci., 10, pp.1435-1442. 

  59. A. Wang, S. Peng, Y. Wu, et al., 2010 : A hybrid bipolar membrane, J. Membr. Sci., 365(2010), pp.269-275. 

  60. B. Bauer, H. Strathmann, F. Effenberger, 1990 : Anionexchange membranes with improved alkaline stability, Desalination, 79, pp.125-144. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로