$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

달 기지 건설을 위한 현지재료 활용 소결 기술 및 향후 과제
Review of the Sintering Technologies Using In-situ Resources for Lunar Construction and Future Works 원문보기

한국항공우주학회지 = Journal of the Korean Society for Aeronautical & Space Sciences, v.50 no.12, 2022년, pp.839 - 856  

류근우 (Department of Future and Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ,  김영재 (Department of Future and Smart Construction Research, Korea Institute of Civil Engineering and Building Technology) ,  신휴성 (Department of Future and Smart Construction Research, Korea Institute of Civil Engineering and Building Technology)

초록
AI-Helper 아이콘AI-Helper

우주 개발 경쟁은 지난 10년간 가속되어 왔으며, 많은 우주국들은 달 지상 탐사 및 유인 탐사를 목표로 연구를 수행 중에 있다. 장기적이고 지속 가능한 우주 탐사를 위하여 달에 유인기지와 기반 시설을 구축하고자 하는 계획이 전 세계에서 추진되고 있다. 하지만 건설에 필요한 재료를 지구로부터 운송하기 위해서는 천문학적인 비용이 소요된다. 따라서 달 현지의 자원을 활용하여 건설 재료를 생산하기 위한 기술이 개발되고 있으며, 그중 하나로 월면토를 소결하는 방안이 제시되었다. 본 논문에서는 대표적인 다섯 가지 소결 기술들인 일반 소결, 태양열 소결, 스파크 플라즈마 소결, 레이저 소결, 마이크로파 소결 기술을 소개하고 향후 필요로 되는 연구 과제에 대해 논의한다.

Abstract AI-Helper 아이콘AI-Helper

Over the last decade, the competition for space development has accelerated. The world's largest space agencies are aiming toward long-term lunar exploration and manned missions. For sustainable and safe lunar exploration, construction of infrastructures that include various habitats is essential. H...

주제어

참고문헌 (77)

  1. Lacerda, M., "A Preliminary Systems Design on the NASA Lunar Modular Habitat with a Human-Autonomous Coordinated Operation: Design through the Integrated Product and Process Development Method," Earth and Space 2021, Virtual Conference, April 2021, pp. 1033~1036. 

  2. Musilova, M., Nunes, A., Kerber, S., Pouwels, C., Wanske, A., D'Angelo, J., Foing, B. and Rogers, H., "The Second EuroMoonMars IMA at HI-SEA Field Campaign: An Overview of The EMMIHS-II Analog Mission to the Moon," EPSC2020 EPSC2020- 1020, Virtual Conference, October 2020. 

  3. Hashimoto, T., Hoshino, T., Tanaka, S., Otake, H., Otsuki, M., Wakabayashi, S., Morimoto, H. and Masuda, K., "Introduction to Japanese exploration study to the moon," Acta Astronautica, Vol. 104, No.2, 2014, pp. 545~551. 

  4. Hong, S. C. and Shin, H. S., "Trend Analysis of Lunar Exploration Missions for Lunar Base Construction," Journal of the Korea AcademiaIndustrial cooperation Society, Vol. 19, No. 7, 2018, pp. 144~152. 

  5. China National Space Administration, "International lunar Research station," China National Space Administration, 2021. 

  6. Meurisse, A., Makaya, A., Willsch, C. and Sperl, M. "Solar 3D printing of lunar regolith," Acta Astronautica, Vol. 152, 2018, pp. 800~810. 

  7. Coordination Group, "In-Situ Resource Utilization Gap Assessment Report," International Space Exploration, technical report, International groups, 2021, p. 7. 

  8. Anand, M., Crawford, I. A., Balat-Pichelin, M., Abanades, S., Van Westrenen, W., Peraudeau, G., Jaumann, R. and Seboldt, W., "A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications," Planetary and Space Science, Vol. 74, No. 1, 2012, pp. 42~48. 

  9. Grugel, R. N. and Toutanji, H. "Sulfur "concrete" for lunar applications-Sublimation concerns," Advances in Space Research, Vol. 41, No. 1, 2008, pp. 103~112. 

  10. Cesaretti, G., Dini, E., De Kestelier, X., Colla, V. and Pambaguian, L. "Building components for an outpost on the Lunar soil by means of a novel 3D printing technology," Acta Astronautica, Vol. 93, 2014, pp. 430~450. 

  11. Buchner, C., Pawelke, R. H., Schlauf, T., Reissner, A. and Makaya, A. "A new planetary structure fabrication process using phosphoric acid," Acta Astronautica, Vol. 143, 2018, pp. 272~284. 

  12. Gosau, J. M., "Regolith stabilization and building materials for the lunar surface," In Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments, July 2012, pp. 243~249. 

  13. Chen, T., Chow, B. J., Wang, M., Zhong, Y. and Qiao, Y., "High-pressure densification of composite lunar cement," Journal of Materials in Civil Engineering, Vol. 29, No. 10, 2017, p. 06017013. 

  14. Farries, K. W., Visintin, P., Smith, S. T. and van Eyk, P. "Sintered or melted regolith for lunar construction: state-of-the-art review and future research directions," Construction and Building Materials, Vol. 296, 2021, p. 123627. 

  15. Fateri, M., Meurisse, A., Sperl, M., Urbina, D., Madakashira, H. K., Govindaraj, S., Gancet, J., Imhof B., Hoheneder, W., Waclavicek, R., Preisinger, C., Podreka, E., Mohamed, M. P. and Weiss, P. "Solar sintering for lunar additive manufacturing," Journal of Aerospace Engineering, Vol. 32, No. 6, 2019, p. 04019101. 

  16. Kim, Y. J., Ryu, B. H., Jin, H., Lee, J. and Shin, H. S. "Microstructural, Mechanical, and Thermal Properties of Microwave-sintered KLS-1 Lunar Regolith Simulant," Ceramics International, Vol. 47, No. 19, 2021, pp. 26891~26897. 

  17. Phuah, X. L., Wang, H., Zhang, B., Cho, J., Zhang, X. and Wang, H., "Ceramic Material Processing Towards Future Space Habitat: Electric Current-Assisted Sintering of Lunar Regolith Simulant," Materials, Vol. 13, No. 18, 2020, p. 4128. 

  18. Taylor, L. A. and Meek, T. T., "Microwave sintering of lunar soil: properties, theory, and practice," Journal of Aerospace Engineering, Vol. 18, No. 3, 2005, pp. 188~196. 

  19. Taylor, L. A., "Generation of native Fe in lunar soil," Engineering, construction, and operations in space I, ASCE, New York, August 1988, pp. 67~77. 

  20. Heiken, G. H., Vaniman, D. T. and French, B. M., "Lunar Sourcebook, a user's guide to the Moon," Cambridge Univ Pr, 1991, p. 756. 

  21. Schwandt, C., Hamilton, J. A., Fray, D. J. and Crawford, I. A. "The production of oxygen and metal from lunar regolith," Planetary and Space Science, Vol. 74, No. 1, 2012, pp. 49~56. 

  22. National Aeronautics and Space Administration, "The Lunar Sample Compendium," National Aeronautics and Space Administration, 2012, https://curator.jsc.nasa.gov/lunar/lsc/, June 2022. 

  23. Housley, R. M., Grant, R. W. and Paton, N. E., "Origin and characteristics of excess Fe metal in lunar glass welded aggregates," Lunar and Planetary Science Conference Proceedings 4, Vol. 4, 1973, pp. 2737~2749. 

  24. McKay, D. S., Carter, J. L., Boles, W. W., Allen, C. C. and Allton, J. H. "JSC-1: A new lunar regolith simulant," Lunar and Planetary Science Conference, Vol. 24, March 1993. 

  25. Bonanno, A. and Bernold, L. E. "Exploratory review of sintered lunar soil based on the results of the thermal analysis of a lunar soil simulant," Journal of Aerospace Engineering, Vol. 28, No. 4, 2015, p. 04014114. 

  26. Kanamori, H., Udagawa, S., Yoshida, T., Matsumoto, S. and Takagi, K. "Properties of lunar soil simulant manufactured in Japan," Space 98, New Mexico, April 1998, pp. 462~468. 

  27. Engelschion, V. S., Eriksson, S. R., Cowley, A., Fateri, M., Meurisse, A., Kueppers, U. and Sperl, M., "EAC-1A: A novel large-volume lunar regolith simulant," Scientific reports, Vol. 10. No. 1, 2020, pp. 1~9. 

  28. Yoo, S. H., Kim, H. D., Lim, J. H. and Park, J. S., "Development of KAU mechanical lunar simulants and drop test of lunar landing gears," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 12, 2014, pp. 1037~1044. 

  29. Ryu, B. H., Wang, C. C. and Chang, I., "Development and geotechnical engineering properties of KLS-1 lunar simulant," Journal of Aerospace Engineering, Vol. 31, No. 1, 2018, p. 04017083. 

  30. Planetaty Simulant Database, 2022, https://simulantdb.com, June 2022. 

  31. German, R. M., Sintering theory and practice. Wiley-VCH, 1996, p. 568. 

  32. Blendell, J. E. and Handwerker, C. A., "Effect of chemical composition on sintering of ceramics," Journal of Crystal Growth, Vol. 75, No. 1, 1986, pp. 138~160. 

  33. Hoshino, T., Wakabayashi, S., Yoshihara, S. and Hatanaka, N. "Key Technology Development for Future Lunar Utilization-Block Production Using Lunar Regolith," Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, Vol. 14, No. 30, 2016, pp. 35~40. 

  34. German, R. M., Suri, P. and Park, S. J. "Liquid phase sintering," Journal of materials science, Vol. 44, No. 1, 2009, pp. 1~39. 

  35. Meurisse, A., Beltzung, J. C., Kolbe, M., Cowley, A. and Sperl, M., "Influence of mineral composition on sintering lunar regolith," Journal of Aerospace Engineering, Vol. 30, No. 4, 2017, p. 04017014. 

  36. McKay, D. S. and Williams, R. J., "A geologic assessment of potential lunar ores," Space resources and space settlements, 1979, pp. 243~255. 

  37. Duke, M. B., "Workshop on Using In Situ Resources for Construction of Planetary Outposts," Workshop on Using In Situ resources for Construction of Planetary Outposts, Houston, No. LPI/TR-98-01, January 1998. 

  38. Song, L., Xu, J., Fan, S., Tang, H., Li, X., Liu, J. and Duan, X. "Vacuum sintered lunar regolith simulant: Pore-forming and thermal conductivity," Ceramics International, Vol. 45, No. 3, 2019, pp. 3627~3633. 

  39. Freeman, R. H., "STEM: Teaching Space Science of Extraterrestrial Development and Defense," Journal of Space Operations and Communicator, Vol. 18, No. 3, 2021. 

  40. Cardiff, E. H. and Hall, B. C., "A dust mitigation vehicle utilizing direct solar heating," Joint Annual Meeting of Lunar Exploration Analysis Group-International Conference on Exploration and Utilization of the Moon-Space Resources Roundtable, November 2008. 

  41. Hintze, P. E., "Building a vertical take off and landing pad using in situ materials," Space manufacturing, Vol. 14, 2010, pp. 29~31. 

  42. Nakamura, T. and Smith, B. "Solar thermal system for lunar ISRU applications: Development and field operation at Mauna Kea, HI," 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Florida, January 2011, p. 433. 

  43. Fateri, M., Sottong, R., Kolbe, M., Gamer, J., Sperl, M. and Cowley, A., "Thermal properties of processed lunar regolith simulant," International Journal of Applied Ceramic Technology, Vol. 16, No. 6, 2019, pp. 2419~2428. 

  44. Imhof, B., Urbina, D., Weiss, P., Sperl, M., Hoheneder, W., Waclavicek, R., Madakashira, H. K., Salini, J., Govindaraj, S. Gancet, J., Mohamed, M. P., Gobert, T., Fateri, M., Meurisse, A., Lopez, O., Preisinger, C. and Preisinger, C., "Advancing solar sintering for building a base on the Moon," 69th International Astronautical Congress (IAC), Adelaide, September 2017. 

  45. Shen, Z., Johnsson, M., Zhao, Z. and Nygren, M. "Spark plasma sintering of alumina," Journal of the American Ceramic Society, Vol. 85, No. 8, 2002, pp. 1921~1927. 

  46. Zhang, X., Gholami, S., Khedmati, M., Cui, B., Kim, Y. R., Kim, Y. J., Shin, H. S. and Lee, J. "Spark plasma sintering of a lunar regolith simulant: effects of parameters on microstructure evolution, phase transformation, and mechanical properties," Ceramics International, Vol. 47, No. 4, 2021, pp. 5209~5220. 

  47. Santanach, J. G., Weibel, A., Estournes, C., Yang, Q., Laurent, C. and Peigney, A. "Spark plasma sintering of alumina: Study of parameters, formal sintering analysis and hypotheses on the mechanism (s) involved in densification and grain growth," Acta Materialia, Vol. 59, No. 4, 2011, pp. 1400~1408. 

  48. Zhang, Z. H., Liu, Z. F., Lu, J. F., Shen, X. B., Wang, F. C. and Wang, Y. D. "The sintering mechanism in spark plasma sintering-proof of the occurrence of spark discharge," Scripta materialia, Vol. 81, 2014, pp. 56~59. 

  49. Zhang, X., Khedmati, M., Kim, Y. R., Shin, H. S., Lee, J., Kim, Y. J. and Cui, B. "Microstructure evolution during spark plasma sintering of FJS-1 lunar soil simulant," Journal of the American Ceramic Society, Vol. 103, No. 2, 2020, pp. 899~911. 

  50. Wang, Q., Michaleris, P. P., Nassar, A. R., Irwin, J. E., Ren, Y. and Stutzman, C. B. "Modelbased feedforward control of laser powder bed fusion additive manufacturing," Additive Manufacturing, Vol. 31, 2020, p. 100985. 

  51. Fateri, M. and Gebhardt, A., "Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications," International Journal of Applied Ceramic Technology, Vol. 12, No. 1, 2015, pp. 46~52. 

  52. Spierings, A. B., Herres, N. and Levy, G., "Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts," Rapid Prototyping Journal, Vol. 17 No. 3, 2011, pp. 195~202. 

  53. Abd-Elghany, K. and Bourell, D. L., "Property evaluation of 304L stainless steel fabricated by selective laser melting," Rapid Prototyping Journal, Vol. 18 No. 5, 2012, pp. 420~428. 

  54. Goulas, A., Harris, R. A. and Friel, R. J. "Additive manufacturing of physical assets by using ceramic multicomponent extra-terrestrial materials," Additive Manufacturing, Vol. 10, 2016, pp. 36~42. 

  55. Goulas, A., Binner, J. G., Harris, R. A. and Friel, R. J., "Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing," Applied Materials Today, 6, 2017, pp. 54~61. 

  56. Balla, V. K., Roberson, L. B., O'Connor, G. W., Trigwell, S., Bose, S. and Bandyopadhyay, A., "First demonstration on direct laser fabrication of lunar regolith parts," Rapid Prototyping Journal, Vol. 18 No. 6, 2012, pp. 451~457. 

  57. Caprio, L., Demir, A. G., Previtali, B. and Colosimo, B. M., "Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion," Additive Manufacturing, Vol. 32, 2020, p. 101029. 

  58. Paeng, D., Yeo, J., Lee, D., Moon, S. J. and Grigoropoulos, C. P. "Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles," Applied Physics A, Vol. 120, No. 4, 2015, pp. 1229~1240. 

  59. Mueller, R. P., Sibille, L., Hintze, P. E., Lippitt, T. C., Mantovani, J. G., Nugent, M. W. and Townsend, I. I., "Additive construction using basalt regolith fines," Earth and Space, October 2014, pp. 394~403. 

  60. Goulas, A., Binner, J. G., Engstrom, D. S., Harris, R. A. and Friel, R. J. "Mechanical behaviour of additively manufactured lunar regolith simulant components," Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 233, No. 8, 2019, pp. 1629~1644. 

  61. Reitz, B., Lotz, C., Gerdes, N., Linke, S., Olsen, E., Pflieger, K., Sphrt, S., Ernst, M., Taschner, P., Neumann, J., Stoll, E. and Overmeyer, L., "Additive manufacturing under lunar gravity and microgravity," Microgravity Science and Technology, Vol. 33, No. 2, 2021, pp. 1~12. 

  62. Neumann, J., Ernst, M., Taschner, P., Gerdes, N., Stapperfens, S., Linke, S., Lotz, C., Koch, J., Wesesels, P., Stoll, E., Overmeyer, L. and Overmeyer, L. "The MOONRISE: payload for mobile selective laser melting of lunar regolith," In International Conference on Space Optics-ICSO 2020, Vol. 11852, 2021, p. 118526T. 

  63. Oghbaei, M. and Mirzaee, O. "Microwave versus conventional sintering: A review of fundamentals, advantages and applications," Journal of alloys and compounds, Vol. 494, No. 1-2, 2010, pp. 175~189. 

  64. Sutton, W. H., "Microwave processing of ceramic materials," American Ceramic Society Bulletin, Vol. 68 No. 2, 1989, pp. 376~386. 

  65. Clark, D. E., Folz, D. C. and West, J. K., "Processing materials with microwave energy," Materials Science and Engineering A, Vol. 287, No. 2, 2020, pp. 153~158. 

  66. Bhattacharya, M. and Basak, T., "A review on the susceptor assisted microwave processing of materials," Energy, Vol. 97, 2016, pp. 306~338. 

  67. Barmatz, M., Steinfeld, D., Begley, S. B., Winterhalter, D. and Allen, C., "Microwave Permittivity and Permeability Measurement on Lunar Soils," 42nd Lunar and Planetary Science Conference, Taxas, No. JSC-CN-22645, March 2011. 

  68. Allan, S. M., Merritt, B. J., Griffin, B. F., Hintze, P. E. and Shulman, H. S. "High-temperature microwave dielectric properties and processing of JSC-1AC lunar simulant," Journal of Aerospace Engineering, Vol. 26, No. 4, 2013, pp. 874~881. 

  69. Kanamori H., Tsubaki S., Yamamoto, M., Fujii, S., Wada, Y., Hoshino, T. and Hosoda, S., "Production of gravel from lunar soil simulant by rapid microwave sintering," Space Resources Roundtable and the Planetary and Terrestrial Mining Sciences Symposium, Colorado School of Mines in Golden, Colorado, 2018. 

  70. Lim, S., Bowen, J., Degli-Alessandrini, G., Anand, M., Cowley, A. and Levin Prabhu, V., "Investigating the microwave heating behaviour of lunar soil simulant JSC-1A at different input powers," Scientific reports, Vol. 11, No. 1, 2021, pp. 1~16. 

  71. Clinton, R. G., Edmunson, J. E., Fiske, M., Effinger, M. R., Jensen, E. and Ballard, J., "Overview of NASA's Moon-to-Mars Planetary Autonomous Construction Technology (MMPACT)," ASCEND, Las Vegas, November 2021, p. 4072. 

  72. Laura, "Spaceship EAC: turning up the heat on lunar dust," ESA blog, 2021, https://blogs.esa.int/exploration/spaceship-eac-turning-up-the-heat-on-lunar-dust/, June 2022. 

  73. Thostenson, E. T. and Chou, T. W., "Microwave processing: fundamentals and applications," Composites Part A: Applied Science and Manufacturing, Vol. 30, No. 9, 1999, pp. 1055~1071. 

  74. Janney, M. A., Calhoun, C. L. and Kimrey, H. D., "Microwave sintering of Solid oxide fuel cell materials: I, zirconia-8 mol% yttria," Journal of the American Ceramic Society, Vol. 75, No. 2, 1992, pp. 341~346. 

  75. Spotz, M. S., Skamser, D. J. and Johnson, D. L., "Thermal stability of ceramic materials in microwave heating," Journal of the American Ceramic Society, Vol. 78, No. 4, 1995, pp. 1041~1048. 

  76. Popovich, V., Laot, M., Cheibas, I., Rich, B., Popovich, V. and Summerer, L., "Additive Manufacturing of Functionally Graded Materials from Lunar Regolith," Technical report, European Space Agency, Europe, p. 6. 

  77. Olhoeft, G. R. and Strangway, D. W., "Dielectric properties of the first 100 meters of the Moon," Earth and Planetary Science Letters, Vol. 24, No. 3, 1975, pp. 394~404. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로