$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

증착 기법을 이용한 리튬이차전지용 초박막 세라믹 코팅 분리막 기술
A Review on Ultrathin Ceramic-Coated Separators for Lithium Secondary Batteries using Deposition Processes 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.25 no.4, 2022년, pp.134 - 153  

김우철 (대구경북과학기술원 에너지공학과) ,  노영준 (대구경북과학기술원 에너지공학과) ,  최승엽 (대구경북과학기술원 에너지공학과) ,  (대구경북과학기술원 에너지공학과) ,  이용민 (대구경북과학기술원 에너지공학과)

초록
AI-Helper 아이콘AI-Helper

리튬이온전지에너지밀도가 지속적으로 높아지고 사용환경이 가혹해지고 있지만, 전지의 안전성은 타협할 수 있는 특성이 아니다. 특히, 더 높은 에너지밀도 확보를 위해 고용량 전극 소재 개발과 함께 분리막 원단 뿐만 아니라 세라믹 코팅층의 두께 및 무게의 박막화와 경량화가 동시에 요구되고 있다. 그 중, 기존 슬러리 코팅 방식증착 방식으로 대체하는 기술이 주목받고 있으며, 분리막의 내열성 확보를 위해 도입된 수 ㎛ 수준의 세라믹 코팅층을 nm 수준으로 박막/경량화 하면서도 동등의 내열성을 확보하는 시도가 진행되고 있다. 증착법으로 제조된 세라믹 코팅 분리막은 리튬이온전지 에너지밀도를 크게 증가시킬 수 있는 효율적인 방법이지만, 균일한 물성의 세라믹 코팅 분리막을 제작하기 위해서는 증착 공정 중 온도를 제어해야 하며, 생산속도와 공정비용을 기존 슬러리 코팅 수준으로 떨어뜨려야 하는 현실적 문제가 존재한다. 그럼에도 불구하고, 분리막 원단 대비 두께 및 무게 증가가 거의 없다는 점에서는 전지의 고에너지밀도 달성에 필요한 매력적인 접근법임은 분명하다. 본 총설에서는 세라믹 증착 코팅에 사용되고 있는 세 가지 방법인 1) 화학적 기상 증착법, 2) 원자층 증착법, 그리고 3) 물리적 기상 증착법으로 제조된 세라믹 코팅 분리막을 소개하고자 한다. 각 증착법의 원리와 장/단점을 설명하고, 제조된 세라믹 코팅 분리막의 물리적, 전기화학적 특성 및 전지의 성능 변화를 비교 분석하였다. 또한, 소재 관점에서 금속 또는 유기물질이 코팅된 초박막 코팅 분리막의 기술 동향도 소개하였다.

Abstract AI-Helper 아이콘AI-Helper

Regardless of a trade-off relationship between energy density and safety, it is essential to improve both properties for future lithium secondary batteries. Especially, to improve the energy density of batteries further, not only thickness but also weight of separators including ceramic coating laye...

주제어

표/그림 (20)

참고문헌 (85)

  1. P. Arora and Z. Zhang, Battery separators, Chem. Rev., 104, 4419-4462 (2004). 

  2. H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci., 7, 3857-3886 (2014). 

  3. T. Nestler, R. Schmid, W. Munchgesang, V. Bazhenov, J. Schilm, T. Leisegang, and D. C. Meyer, Separators - Technology review: Ceramic based separators for secondary batteries, AIP Conference Proceedings, 1597, 155 (2014). 

  4. H.-S. Jeong, D. W. Kim, Y. U. Jeong, and S.-Y. Lee, Effect of phase inversion on microporous structure development of Al 2 O 3 /poly(vinylidene fluoridehexafluoropropylene)-based ceramic composite separators for lithium-ion batteries, J. Power Sources, 195(18), 6116-6121 (2010). 

  5. M. Kim, Y.-C. Nho, and J. H. Park, Electrochemical performances of inorganic membrane coated electrodes for Li-ion batteries, J. Solid State Electrochem., 14, 769-773 (2010). 

  6. S.-Y. Lee, D.-J. Seo, J.-Y. Sohn, S.-K. Kim, J.-H. Hong, Y.-S. Kim, and H.-M. Jang, Organic/inorganic composite separator having morphology gradient, manufacturing method thereof and electrochemical device containing the same, US Patents 7, 638, 241 (2022). 

  7. S.-K Kim, J.-Y Sohn, J.-H Park, H.-M Jang, B.-J Shin, S.-Y Lee, and J.-H Hong, Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same, US Patents 7, 709, 152 (2022). 

  8. G. Horpel, V Hennige, C. Hying, S. Augustin, and C. Jost, Use of a ceramic separator in lithium ion batteries, comprising an electrolyte containing ionic fluids, US Patents 9, 214, 659 (2022). 

  9. D. Yeon, Y. Lee, M. H. Ryou, and Y. M. Lee, New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries, Electrochim. Acta, 157, 282-289 (2015). 

  10. D. H. Han, M. Zhang, P. X. Lu, Y. L. Wan, Q. L. Chen, H. Y. Niu, and Z. W. Yu, A multifunctional separator with Mg(OH) 2 nanoflake coatings for safe lithium-metal batteries, J. Energy Chem., 52, 75-83 (2021). 

  11. B. Jung, B. Lee, Y. C. Jeong, J. Lee, S. R. Yang, H. Kim, and M. Park, Thermally stable non-aqueous ceramiccoated separators with enhanced nail penetration performance, J. Power Sources, 427, 271-282 (2019). 

  12. Y. Lee, H. Lee, T. Lee, M. H. Ryou, and Y. M. Lee, Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries, J. Power Sources, 294, 537-544 (2015). 

  13. Q. Liu, M. Xia, J. Chen, Y. Tao, Y. Wang, K. Liu, M. Li, W. Wang, and D. Wang, High performance hybrid Al 2 O 3 /poly(vinyl alcohol-co-ethylene) nanofibrous membrane for lithium-ion battery separator, Electrochim. Acta, 176, 949-955 (2015). 

  14. J. H. Park, W. Park, J. H. Kim, D. Ryoo, H. S. Kim, Y. U. Jeong, D. W. Kim, and S. Y. Lee, Close-packed poly(methyl methacrylate) nanoparticle arrays-coated polyethylene separators for high-power lithium-ion polymer batteries, J. Power Sources, 196, 7035-7038(2011). 

  15. Y. Roh, U. Kim, and Y.-M. Lee, Physical and electrochemical properties of ceramic-coated separators with different ceramic types for lithium-ion batteries, J. Korean Battery Soc., 1, 106-112 (2021). 

  16. Y. Roh, D. Jin, E. Kim, S. Byun, Y. S. Lee, M. H. Ryou, and Y. M. Lee, Highly improved thermal stability of the ceramic coating layer on the polyethylene separator via chemical crosslinking between ceramic particles and polymeric binders, Chem. Eng. J., 433, 134501 (2022). 

  17. H. Jeon, Y. Roh, D. Jin, M. H. Ryou, Y. C. Jeong, and Y. M. Lee, Crosslinkable polyhedral silsesquioxane-based ceramic-coated separators for Li-ion batteries, J. Indust. Eng. Chem., 71, 277-283 (2019). 

  18. A. Yanguas-Gil, Growth and transport in nanostructured materials: Reactive transportation in PVD, CVD, and ALD, Springer (2016). 

  19. G. L. Doll, B. A. Mensah, H. Mohseni, and T. W. Scharf, Chemical vapor deposition and atomic layer deposition of coatings for mechanical applications, J. Thermal Spray Technol., 19, 510-516 (2010). 

  20. S. Li, S. Wang, D. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golverg, and G. Eda, Halide-assisted atmospheric pressure growth of large WSe 2 and WS 2 monolayer crystals, Appl. Mater. Today, 1, 60-66 (2015). 

  21. Y. Qi, B. Deng, X. Guo, S. Chen, J. Gao, T. Li, Z. Dou, H. Ci, J. Sun, Z. Chen, R. Wang, L. Cui, X. Chen, K. Chen, H. Wang, S. Wang, P. Gao, M. H. Rummeli, H. Peng, Y. Zhang, and Z. Liu, Switching vertical to horizontal graphene growth using faraday cage-assisted PECVD approach for high-performance transparent heating device, Adv. Mater., 30(8), 1704839 (2018). 

  22. D. BARRECA, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, A. Pozza, and E. Tondello, CVD Co 3 O 4 nanopyramids: a nano-platform for photo-assisted H 2 production, Chem. Vap. Depos., 16(10-12), 296-300 (2010). 

  23. P. M. Sousa, A. J. Silvestre, N. Popovici, and O. Conde, Morphological and structural characterization of CrO 2 /Cr 2 O 3 films grown by Laser-CVD, Appl. Surf. Sci., 247, 423-428 (2005). 

  24. K. Chan and K. K. Gleason, Initiated CVD of poly (methyl methacrylate) thin films, Chem. Vap. Depos., 11(10), 437-443 (2005). 

  25. K. L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci., 48(2), 57-170 (2003). 

  26. S. M. George, Atomic layer deposition: An overview, Chem. Rev., 110(1), 111-131 (2010). 

  27. R. L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/ water process, J. Appl. Phys., 97, 121301 (2005). 

  28. S. M. George, A. W. Ott, and J. W. Klaus, Surface chemistry for atomic layer growth, J. Phys. Chem., 100(31), 13121-13131 (1996). 

  29. D. M. Mattox, Physical vapor deposition (PVD) processes, Met. Finish., 97, 1 (2000). 

  30. H. Adachi and K. Wasa, Handbook of sputtering technology, 2nd ed., 3-39, Elsevier (2012). 

  31. A. Baptista, F. Silva, J. Porteiro, J. Miguez, and G. Pinto, Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands, Coatings, 8(11), 402 (2018). 

  32. J. Greener, G. Plearson, and M. Cakmak (eds.), Roll-toroll manufacturing: Process elements and recent advances, John Wiley & Sons (2018). 

  33. Y. Lin and X. Chen (eds.), Advanced nano deposition methods, John Wiley & Sons (2016). 

  34. H. Conrads and M. Schmidt, Plasma generation and plasma sources, Plasma Sources Sci. Technol., 9, 441 (2000). 

  35. R. Behrisch and W. Eckstein (eds.), Sputtering by particle bombardment: Experiments and computer calculations from threshold to MeV energies, Springer Science & Business Media (2007). 

  36. W. D. Westwood, S. Maniv, and P. J. Scanlon, The current-voltage characteristic of magnetron sputtering systems, J. Appl. Phys., 54, 6841 (1983). 

  37. M. B. Assouar, O. Elmazria, L. le Brizoual, and P. Alnot, Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices, Diam. Relat. Mater., 11(3-6), 413-417 (2002). 

  38. M. H. Suhail, G. M. Rao, and S. Mohan, dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO 2 films, J. Appl. Phys., 71, 1421 (1998). 

  39. W. A. Pliskin, Comparison of properties of dielectric films deposited by various methods, J. Vac. Sci. Technol., 14, 1064 (1977). 

  40. S. Chowdhury, M. T. Laugier, and I. Z. Rahman, Effect of target self-bias voltage on the mechanical properties of diamond-like carbon films deposited by RF magnetron sputtering, Thin Solid Films, 468(1-2), 149-154 (2004). 

  41. M. Mieno and T. Yoshida, Preparation of cubic boron nitride films by RF sputtering, Jpn. J. Appl. Phys., 29, 1175-1177 (1990). 

  42. R. Boulmani, M. Bendahan, C. Lambert-Mauriat, M. Gillet, and K. Aguir, Correlation between rf-sputtering parameters and WO3 sensor response towards ozone, Sens. Actuators B Chem., 125, 622-627 (2007). 

  43. P. J. Kelly and R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 56, 159-172 (2000). 

  44. S. Swann, Magnetron sputtering, Phys. Technol., 19, 67 (1988). 

  45. S. Ido, M. Kashiwagi, and M. Takahashi, Computational studies of plasma generation and control in a magnetron sputtering system, Jpn. J. Appl. Phys., 38, 4450 (1999). 

  46. Zheng, B., Fu, Y., Wang, K., Schuelke, T., & Fan, Q. H, Electron dynamics in radio frequency magnetron sputtering argon discharges with a dielectric target, Plasma Sources Science and Technology, 30, (2021). 

  47. J. A. Thornton, Magnetron sputtering: basic physics and application to cylindrical magnetrons, J. Vac. Sci. Technol., 15, 171 (1998). 

  48. R. D. Arnell and P. J. Kelly, Recent advances in magnetron sputtering, Surf. Coat. Technol., 112(1-3), 170-176 (1999). 

  49. G. Brauer, B. Szyszka, M. Vergohl, and R. Bandorf, Magnetron sputtering - milestones of 30 years, Vacuum, 84(12), 1354-1359 (2010). 

  50. M.V. Castro, C.J. Tavares, Dependence of Ga-doped ZnO thin film properties on different sputtering process parameters: Substrate temperature, sputtering pressure and bias voltage, Thin Solid Films, 586, 13-21 (2015). 

  51. S. Lobe, A. Bauer, S. Uhlenbruck, and D. FattakhovaRohlfing, Physical vapor deposition in solid-state battery development: From materials to devices, Adv. Sci., 8(11), 2002044 (2021). 

  52. M. Kim and J. H. Park, Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery, J. Power Sources, 212, 22-27 (2012). 

  53. Y. Yoo, B. G. Kim, K. Pak, S. J. Han, H. S. Song, J. W. Choi, and S. G. Im, Initiated chemical vapor deposition (iCVD) of highly cross-linked polymer films for advanced lithium-ion battery separators, ACS Appl. Mater. Interfaces, 7, 18849-18855 (2015). 

  54. T. Lei, W. Chen, W. Lv, J. Huang, J. Zhu, J. Chu, C. Yan, C. Wu, Y. Yan, W. He, J. Xiong, Y. Li, C. Yan, J. B. Goodenough, and X. Duan, Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries, Joule, 2, 2091-2104 (2018). 

  55. T. Z. Zhuang, J. Q. Huang, H. J. Peng, L. Y. He, X. B. Cheng, C. M. Chen, and Q. Zhang, Rational integration of polypropylene/graphene oxide/nafion as ternarylayered separator to retard the shuttle of polysulfides for lithium-sulfur batteries, Small, 12, 381-389 (2016). 

  56. J. bin Wang, Z. Ren, Y. Hou, X. L. Yan, P. Z. Liu, H. Zhang, H. X. Zhang, and J. J. Guo, A review of graphene synthesisatlow temperatures by CVD methods, New Carbon Mater., 35, 193-208 (2020). 

  57. E.C. Cengiz, O. Salihoglu, O. Ozturk, C. Kocabas, and R. Demir-Cakan, Ultra-lightweight chemical vapor deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries, J. Alloys Compd., 777, 1017-1024 (2019). 

  58. Z. Du, C. Guo, L. Wang, A. Hu, S. Jin, T. Zhang, H. Jin, Z. Qi, S. Xin, X. Kong, Y. G. Guo, H. Ji, and L. J. Wan, Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries, ACS Appl. Mater. Interfaces, 9, 43696-43703 (2017). 

  59. Y. S. Jung, A. S. Cavanagh, L. Gedvilas, N. E. Widjonarko, I. D. Scott, S. H. Lee, G. H. Kim, S. M. George, and A. C. Dillon, Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes, Adv. Energy Mater., 2, 1022-1027 (2012). 

  60. A. C. Dillon, A. W. Ott, J. D. Way, and S. M. George, Surface chemistry of Al 2 O 3 deposition using Al(CH 3 ) 3 and H 2 O in a binary reaction sequence, Surface Sci., 322, 230-242 (1995). 

  61. H. Chen, Q. Lin, Q. Xu, Y. Yang, Z. Shao, and Y. Wang, Plasma activation and atomic layer deposition of TiO 2 on polypropylene membranes for improved performances of lithium-ion batteries, J. Membr. Sci., 458, 217-224 (2014). 

  62. F. Chen, H. Yang, X. Liu, D. Chen, X. Xiao, K. Liu, J. Li, F. Cheng, B. Dong, Y. Zhou, Z. Guo, Y. Qin, S. Wang, and W. Xu, Facile fabrication of multifunctional hybrid silk fabrics with controllable surface wettability and laundering durability, ACS Appl. Mater. Interfaces, 8, 5653-5660 (2016). 

  63. J. Moon, J. Y. Jeong, J. I. Kim, S. Kim, and J. H. Park, An ultrathin inorganic-organic hybrid layer on commercial polymer separators for advanced lithium-ion batteries, J. Power Sources, 416, 89-94 (2019). 

  64. J. W. Lee, A. M. Soomro, M. Waqas, M. A. U. Khalid, and K. H. Choi, A highly efficient surface modified separator fabricated with atmospheric atomic layer deposition for high temperature lithium ion batteries, Int. J. Energy Res., 44(8), 7035-7046 (2020). 

  65. C. H. Chao, C. te Hsieh, W. J. Ke, L. W. Lee, Y. F. Lin, H. W. Liu, S. Gu, C. C. Fu, R. S. Juang, B. C. Mallick, Y. A. Gandomi, and C. Y. Su, Roll-to-roll atomic layer deposition of titania coating on polymeric separators for lithium ion batteries, J. Power Sources, 482, 228896 (2021). 

  66. C. Yang, K. Fu, Y. Zhang, E. Hitz, L. Hu, C. Yang, K. Fu, Y. Zhang, E. Hitz, and L. Hu, Protected lithium-metal anodes in batteries: From liquid to solid, Adv. Mater., 29, 1701169 (2017). 

  67. Z. Liu, Y. Jiang, Q. Hu, S. Guo, L. Yu, Q. Li, Q. Liu, and X. Hu, Safer lithium-ion batteries from the separator aspect: Development and future perspectives, Energy Environ. Mater., 4, 336-362 (2021). 

  68. W. Wang, Y. Yuan, J. Wang, Y. Zhang, C. Liao, X. Mu, H. Sheng, Y. Kan, L. Song, and Y. Hu, Enhanced electrochemical and safety performance of lithium metal batteries enabled by the atom layer deposition on PVDFHFP separator, ACS Appl. Energy Mater., 2, 4167-4174 (2019). 

  69. J. A. Oke, Atomic layer deposition and other thin film deposition techniques: from principles to film properties, J. Mater. Res. Technol., 21, 2481-2514 (2022). 

  70. T. Lee, W. K. Kim, Y. Lee, M. H. Ryou, and Y. M. Lee, Effect of Al2O3 coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries, Macromol. Res., 22, 1190-1195 (2014). 

  71. P. Cools, L. Astoreca, P. S. E. Tabaei, M. Thukkaram, H. D. Smet, R. Morent, and N. D. Geyter, Surface treatment of polymers by plasma, Surface modification of polymers: Methods and applications, 31-65 (2019). 

  72. T. Lee, Y. Lee, M. H. Ryou, and Y. M. Lee, A facile approach to prepare biomimetic composite separators toward safety-enhanced lithium secondary batteries, RSC Adv., 5, 39392-39398 (2015). 

  73. S. J. Moss, A. M. Jolly, and B. J. Tighe, Plasma oxidation of polymers, Plasma Chem. Plasma Process., 6, 401-416 (1986). 

  74. R. M. France and R. D. Short, Plasma treatment of polymers: The effects of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study, Langmuir, 14, 4827-4835 (1998). 

  75. R. M. France and R. D. Short, Plasma treatment of polymers effects of energy transfer from an argon plasma on the surface chemistry of poly(styrene), low density poly(ethylene), poly(propylene) and poly(ethylene terephthalate), J. Chem. Soc., Faraday Trans., 93, 3173-3178 (1997). 

  76. K. Peng, B. Wang, Y. Li, and C. Ji, Magnetron sputtering deposition of TiO 2 particles on polypropylene separators for lithium-ion batteries, RSC Adv., 5, 81468-81473 (2015). 

  77. S. Wu, J. Ning, F. Jiang, J. Shi, and F. Huang, Ceramic nanoparticle-decorated melt-electrospun PVDF nanofiber membrane with enhanced performance as a lithium-ion battery separator, ACS Omega, 4, 16309-16317 (2019). 

  78. A. Gogia, Y. Wang, A. K. Rai, R. Bhattacharya, G. Subramanyam, and J. Kumar, Binder-free, thin-film ceramic-coated separators for improved safety of lithiumion batteries, ACS Omega, 6, 4204-4211 (2021). 

  79. H. Lee, X. Ren, C. Niu, L. Yu, M. H. Engelhard, I. Cho, M.-H. Ryou, H. Soo Jin, H.-T. Kim, J. Liu, W. Xu, J.-G. Zhang, H. Lee, X. Ren, C. Niu, L. Yu, J. Liu, W. Xu, J. Zhang, M. H. Engelhard, I. Cho, M. Ryou, H. S. Jin, and H. Kim, Suppressing lithium dendrite growth by metallic coating on a separator, Adv. Funct. Mater., 27, 1704391 (2017). 

  80. K. Wen, L. Liu, S. Chen, and S. Zhang, A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator, RSC Adv., 8, 13034-13039 (2018). 

  81. M. M. U. Din and R. Murugan, Metal coated polypropylene separator with enhanced surface wettability for high capacity lithium metal batteries, Sci. Rep., 9, 1-12 (2019). 

  82. Z. Li, M. Peng, X. Zhou, K. Shin, S. Tunmee, X. Zhang, C. Xie, H. Saitoh, Y. Zheng, Z. Zhou, Y. Tang, Z. Li, M. Peng, X. Zhou, K. Shin, X. Zhang, C. Xie, Y. Zheng, Y. Tang, Z. Zhou, and S. Tunmee, In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes, Adv. Mater., 33, 2100793 (2021). 

  83. Y. Liu, S. Xiong, J. Wang, X. Jiao, S. Li, C. Zhang, Z. Song, and J. Song, Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites, Energy Storage Mater., 19, 24-30 (2019). 

  84. S. H. Choi, S. J. Lee, D. J. Yoo, J. H. Park, J. H. Park, Y. N. Ko, J. Park, Y.-E. Sung, S.-Y. Chung, H. Kim, and J. W. Choi, Marginal magnesium doping for highperformance lithium metal batteries, Adv. Energy Mater., 9(41), 1902278 (2019). 

  85. K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, and Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010 (2016). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로