$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 다채널 광섬유 레이저 및 다중 빔 정렬 기술 개발
Development of Multi-channel Fiber Laser and Beam Alignment Method 원문보기

한국광학회지 = Korean journal of optics and photonics, v.33 no.6, 2022년, pp.245 - 251  

김영찬 (광주과학기술원 고등광기술연구소) ,  류대건 (광주과학기술원 고등광기술연구소) ,  노영철 (광주과학기술원 고등광기술연구소)

초록
AI-Helper 아이콘AI-Helper

타일형 결맞음 빔결합 연구를 위하여 시드 공유형 다채널 광섬유 레이저 및 출력단, 다중 빔 정렬 기술을 개발하였다. 광섬유 레이저는 7개의 채널을 갖고, 각각의 채널당 출력 10 W 이상으로 시드, 전치 증폭기, 광 분배기, 주 증폭기로 구성된 master oscillator power amplifier 구조이다. 레이저 빔 시준 및 정렬을 위하여 틸팅 기능이 가능한 출력단을 개발하였다. 출력단은 채움값을 높이기 위하여 원통형 구조로 제작하였으며, 광섬유 엔드캡의 결합이 가능하게 하였고, 출력단 내부에 PZT를 장착하여 틸팅 기능을 구현하였다. 다중 채널 레이저의 각 채널 빔을 표적의 한 점으로 정렬하기 위하여 stochastic parallel gradient decent (SPGD) 알고리즘을 적용하였다. SPGD 알고리즘을 이용한 PZT 제어를 통해 다중 빔 정렬을 성공적으로 구현하였다. 다중 빔 정렬 기술을 이용한 결맞음 빔결합 기술 개발이 기대된다.

Abstract AI-Helper 아이콘AI-Helper

We have developed a multi-channel fiber laser for tiled laser beam combining and a laser output array system for multi-beam alignment. The fiber laser is a master oscillator power amplifier configuration that has a common seed, a preamplifier, and a 7-channel amplifier. The output power of each chan...

Keyword

표/그림 (7)

참고문헌 (24)

  1. R. A. Motes, Introduction to High Power Fiber Lasers (Directed Energy Professional Society, NM, USA, 2009). 

  2. Z. Liu, X. Jin, R. Su, P. Ma, and P. Zhou, "Development status of high power fiber lasers and their coherent beam combination," Sci. China Inf. Sci. 62, 41301 (2019). 

  3. H. Jeong, K. H. Lee, J. Lee, D.-J. Kim, J. H. Lee, and M. Jo, "High-beam-quality 2-kW-class spectrally combined laser using narrow-linewidth ytterbium-doped polarization-maintaining fiber amplifiers," Korean J. Opt. Photonics 31, 218-222 (2020). 

  4. D. C. Jones, A. J. Turner, A. M. Scott, S. M. Stone, R. G. Clark, C. Stace, and C. D. Stacey, "A multi-channel phase locked fibre bundle laser," Proc. SPIE 7580, 75801V (2010). 

  5. T. Weyrauch, M. Vorontsov, J. Mangano, V. Ovchinnikov, D. Bricker, E. Polnau, and A. Rostov, "Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km," Opt. Lett. 41, 840-843 (2016). 

  6. H. Chang, Q. Chang, J. Xi, T. Hou, R. Su, P. Ma, J. Wu, C. Li, M. Jiang, Y. Ma, and P. Zhou, "First experimental demonstration of coherent beam combining of more than 100 fiber lasers," Photonics Res. 8, 1943-1948 (2020). 

  7. L. A. Beresnev, R. A. Motes, K. J. Townes, P. Marple, K. Gurton, A. R. Valenzuela, C. Williamson, J. J. Liu, and C. Washer, "Design of a noncooled fiber collimator for compact, highefficiency fiber laser arrays," Appl. Opt. 56, B169-B178 (2017). 

  8. L. Beresnev, A. Flores, R. Holten, A. Valenzuela, A. Taliaferro, A. Schweinsberg, K. Gurton, D. Ligon, C. Williamson, and S. Bilyk, "Multi-kW, uncooled densely packed fiber array for laser beam combining," in Proc. 2019 IEEE Research and Applications of Photonics in Defense Conference-RAPID (Miramar Beach, FL, USA, Aug. 19-21, 2019), pp. 1-4. 

  9. Y. Kim, Y. Yun, H. Kim, H. Chang, J. Park, Y. Choe, J. Na, J. Yi, H. Kang, M. Yeo, K. Choi, Y. Noh, Y. Jeong, H. Lee, B. Yu, D. Yeom, and J. Jun, "3-channel tiled-aperture coherent-beam-combining system based on target-in-the-loop monitoring and SPGD algorithm," Korean J. Opt. Photonics 32, 1-8 (2021). 

  10. L. Daniault, M. Hanna, L. Lombard, Y. Zaouter, E. Mottay, D Goular, P. Bourdon, F. Druon, and P. Georges, "Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers," Opt. Lett. 36, 621-623 (2011). 

  11. M. Muller, C. Aleshire, A. Klenke, E. Haddad, F. Legare, A. Tunnermann, and J. Limpert, "10.4 kW coherently combined ultrafast fiber laser," Opt. Lett. 45, 3083-3086 (2020). 

  12. I. Fsaifes, L. Daniault, S. Bellanger, M. Veinhard, J. Bourderionnet, C. Larat, E. Lallier, E. Durand, A. Bringnon, and J.-C. Chanteloup, "Coherent beam combining of 61 femtosecond fiber amplifiers," Opt. Express 28, 20152-20161 (2020). 

  13. M. A. Vorontsov, T. Weyrauch, L. A. Beresnev, G. W. Carhart, L. Liu, and K. Aschenbach, "Adaptive array of phase-locked fiber collimators: Analysis and experimental demonstration," IEEE J. Sel. Top. Quantum Electron. 15, 269-280 (2009). 

  14. D. Zhi, P. Ma, Y. Ma, X. Wang, P. Zhou, and L. Si, "Novel adaptive fiber-optics collimator for coherent beam combination," Opt. Express 22, 31520-31528 (2014). 

  15. D. Zhi, Y. Ma, R. Tao, P. Zhou, X. Wang, Z. Chen, and L. Si, "Highly efficient coherent conformal projection system based on adaptive fiber optics collimator array," Sci. Rep. 9, 2783 (2019). 

  16. C. Geng, W. Luo, Y. Tan, H. Liu, J. Mu, and X. Li, "Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control," Opt. Express. 21, 25045-25055 (2013). 

  17. Z. M. Huang, C. L. Liu, J. F. Li, and D. Y. Zhang, "A high-speed, high-efficiency phase controller for coherent beam combining based on SPGD algorithm," Quantum Electron. 44, 301 (2014). 

  18. Z. Huang, X. Tang, D. Zhang, X. Wang, Q. Hu, J. Li, and C. Liu, "Coherent beam combination of ten fiber arrays via stochastic parallel gradient descent algorithm," J. Opt. Technol. 82, 16-20 (2015). 

  19. M. A. Vorontsov and V. P. Sivokon, "Stochastic parallelgradient-descent technique for high-resolution wave-front phase-distortion correction," J. Opt. Soc. Am. A 15, 2745-2758 (1998). 

  20. P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, and S. Guo, "Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application," IEEE J. Sel. Top. Quantum Electron. 15, 248-256 (2009). 

  21. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, "A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light," Opt. Express 20, 21196-21213 (2012). 

  22. V. R. Supradeepa, "Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise," Opt. Express 21, 4677-4687 (2013). 

  23. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735- 17744 (2014). 

  24. C. Jun, M. Jung, W. Shin, B.-A. Yu, Y. S. Yoon, Y. Park, and K. Choi, "818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration," Laser Phys. Lett. 16, 015102 (2019). 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로