$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 발광다이오드 광량 및 파장에 따른 Chlorella vulgaris의 생장 및 생화학적 조성 변화 연구
Effects of the Spectral Quality and Intensity of Light-Emitting Diodes on Growth and Biochemical Composition of Chlorella vulgaris 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.56 no.6, 2023년, pp.878 - 888  

한지승 (부경대학교 지구환경시스템과학부 해양학전공) ,  (부경대학교 지구환경시스템과학부 해양학전공) ,  최태진 (부경대학교 미생물학과) ,  오석진 (부경대학교 지구환경시스템과학부 해양학전공)

Abstract AI-Helper 아이콘AI-Helper

Growth responses of Chlorella vulgaris exposed to different light intensities and wavelengths of light-emitting diodes (LEDs) were investigated. C. vulgaris was cultured under red LED (650 nm), blue LED (450 nm), green LED (520 nm), and fluorescent lamps (three wavelengths, control). The maximum gro...

Keyword

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • vulgaris의 생장에 대한 최적의 파장을 파악하였다. 또한 LED 광량 및 파장에 따라 달라지는 탄수화물, 단백질과 지질 함량을 측정하여 유용물질 증진에 효과적인 파장을 파악하고 토의하였다. 이러한 결과들은 추후 고효율과 기능성을 고려한 광배양시스템의 개발과 산업적 응용을 위한 기초자료로 활용될 것이라 기대된다.
본문요약 정보가 도움이 되었나요?

참고문헌 (77)

  1. Abiusi F, Sampietro G, Marturano G, Biondi N, Rodolfi L,?D'Ottavio M and Tredici MR. 2014. Growth, photosynthetic?efficiency, and biochemical composition of Tetraselmis?suecica F&M-M33 grown with LEDs of different colors.?Biotechnol Bioeng 111, 956-964. https://doi.org/10.1002/bit.25014. 

  2. Andersen RA. 2005. Algal Culturing Techniques. Elsevier, Amsterdam, Netherlands. 

  3. Asuthkar M, Gunti Y, S RR, Rao CS and Yadavalli R. 2016. Effect of different wavelengths of light on the growth of Chlorella pyrenoidosa. Int J Pharm Sci Res 7, 847-851. https://doi.org/10.13040/IJPSR.0975-8232.7(2).847-51 

  4. Atta M, Idris A, Bukhari A and Wahidin S. 2013. Intensity of?blue LED light: A potential stimulus for biomass and lipid?content in fresh water microalgae Chlorella vulgaris. Bioresour Technol 148, 373-378. https://doi.org/10.1016/j.biortech.2013.08.162. 

  5. Baba M, Kikuta F, Suzuki I, Watanabe MM and Shiraiwa Y. 2012. Wavelength specificity of growth, photosynthesis, and?hydrocarbon production in the oil-producing green alga Botryococcus braunii. Bioresour Technol 109, 266-270. https://doi.org/10.1016/j.biortech.2011.05.059. 

  6. Baidya A, Akter T, Islam MR, Shah AKMA, Hossain A, Salam?MA and Paul SI. 2021. Effect of different wavelengths of?LED light on the growth, chlorophyll, β-carotene content?and proximate composition of Chlorella ellipsoidea. Heliyon 7, e08525. https://doi.org/10.1016/j.heliyon.2021.e08525. 

  7. Bentahar S, Abada R and Nadia PY. 2023. Biotechnology: Definitions, types and main applications. YMER 22, 563-575.?https://doi.org/10.37896/YMER22.04/49. 

  8. Carvalho AP, Silva SO, Baptista JM and Malcata FX. 2011.?Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl Microbiol Biotechnol 89,?1275-1288. https://doi.org/10.1007/s00253-010-3047-8. 

  9. Chen CY, Zhao ZQ, Yen HW, Ho SH, Cheng CL, Lee DJ, Bai?FW and Chang JS. 2013. Microalgae-based carbohydrates?for biofuel production. Biochem Eng J 78, 1-10. https://doi.org/10.1016/j.bej.2013.03.006. 

  10. Chio BR, Kim DS and Lee TY. 2012. Correlation conditions?for marine microalgae Isochrysis galbana under illumination of light emitting diodes. J Korean Geo-Environm Soc?13, 63-68. 

  11. Chio GG, Bae MS, Park JS, Park BJ, Ahn CY and Oh HM. 2007. Growth and r-Linolenic acid production of Arthrospira (Spirulina) platensis in heterotrophic culture. Kor J?Microbiol Biotechnol Lett 35, 45-51. 

  12. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol Adv 25,?294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001. 

  13. Chu B, Zhao J, Zheng H, Gong J, Chen K, Zhang S, Xiao G and?He Y. 2021. Performance of LED with mixed wavelengths?or two-phase culture on the growth and lipid accumulation?of Chlorella pyrenoidosa. Int J Agric Biol Eng 14, 90-96. 

  14. Cunningham FX, Dennenberg RJ, Jursinic PA and Gantt E. 1990. Growth under red light enhances photosystem II relative to photosystem I and phycobilisomes in the red alga?Porphyridium cruentum. Plant Physiol 93, 888-895. https://doi.org/10.1104/pp.93.3.888. 

  15. Das P, Lei W, Aziz SS and Obbard JP. 2011. Enhanced algae?growth in both phototrophic and mixotrophic culture under?blue light. Bioresour Technol 102, 3883-3887. https://doi.org/10.1016/j.biortech.2010.11.102. 

  16. DuBois M, Gilles KA, Hamilton JK, Rebers PA and Smith F. 1956. Colorimetric method for determination of sugars and?related substances. Anal Chem 28, 350-356. https://doi.org/10.1021/ac60111a017. 

  17. Enyidi U. 2017. Chlorella vulgaris as protein source in the diets?of African catfish Clarias gariepinus. Fishes 2, 17. https://doi.org/10.3390/fishes2040017. 

  18. Fu W, Gudmundsso O, Paglia G, Herjolfsson G, Andresson OS,?Palsson BO and Brynjolfsson S. 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biotechnol 97, 2395-2403. https://doi.org/10.1007/s00253-012-4502-5. 

  19. Gim GH, Lee YM, Kim DJ, Jeong SH and Kim SW. 2012.?Comparison of biomass productivity of two green microalgae through continuous cultivation. KSBB J 27, 97-102.?https://doi.org/10.7841/ksbbj.2012.27.2.097. 

  20. Guo G and Fang Z. 2020. Effect of light quality on the cultivation of chlorella pyrenoidosa. E3S Web Conf 143, 02033.?https://doi.org/10.1051/e3sconf/202014302033. 

  21. Habibi R and Sibi G. 2019. Light emitting diode (LED) illumination for enhanced growth and cellular composition?in three microalgae. Adv Microbiol Res 3, 1-6. https://doi.org/10.24966/amr-694x/100007. 

  22. Han KH and Oh SJ. 2023. The effects of the light quality of?a light emitting diode (LED) on the carbohydrate, protein?and lipid contents of Tetraselmis suecica and T. tetrathele.?J Korean Soc Mar Environ Saf 29, 36-43. https://doi.org/10.7837/kosomes.2023.29.1.036. 

  23. Harun R, Danquah MK and Forde GM. 2009. Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85, 199-203. https://doi.org/10.1002/jctb.2287. 

  24. Hasegawa T, Okuda M, Makino M, Hiromatsu K, Nomoto K?and Yoshikai Y. 1995. Hot water extracts of Chlorella vulgaris reduce opportunistic infection with Listeria monocytogenes in C57BL/6 mice infected with LP-BM5 murine leukemia viruses. Int J Immunopharmacol 17, 505-512. https://doi.org/10.1016/0192-0561(95)00035-z. 

  25. He Y, Lian J, Wang L, Tan L, Khan F, Li Y, Wang H, Rebours C,?Han D and Hu Q. 2023. Recovery of nutrients from aquaculture wastewater: Effects of light quality on the growth, biochemical composition, and nutrient removal of Chlorella sorokiniana. Algal Res 69, 102965. https://doi.org/10.1016/j.algal.2022.102965. 

  26. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M and Darzins A. 2008. Microalgal triacylglycerols as?feedstocks for biofuel production: Perspectives and advances. Plant J 54, 621-639. https://doi.org/10.1111/j.1365-313x.2008.03492.x. 

  27. Hultberg M, Jonsson HL, Bergstrand KJ and Carlsson AS. 2014. Impact of light quality on biomass production and?fatty acid content in the microalga Chlorella vulgaris. Bioresour Technol 159, 465-467. https://doi.org/10.1016/j.biortech.2014.03.092. 

  28. Javanmardian M and Palsson BO. 1991. High-density photoautotrophic algal cultures: Design, construction, and operation?of a novel photobioreactor system. Biotechnol Bioeng 38,?1182-1189. https://doi.org/10.1002/bit.260381010. 

  29. Justo GZ, Silva MR and Queiroz MLS. 2001. Effects of the?green algae Chlorella vulgaris on the response of the host?hematopoietic system to intraperitoneal ehrlich ascites tumor?transplantation in mice. Immunopharmacol Immunotoxicol?23, 119-132. https://doi.org/10.1081/iph-100102573. 

  30. Kang MS, Sim SJ and Chae HJ. 2004. Chlorella as a functional?biomaterial. Korean J Biotechnol Bioeng 19,1-11. 

  31. Katsuda T, Lababpour A, Shimahara K and Katoh S. 2004.?Astaxanthin production by Haematococcus pluvialis under?illumination with LEDs. Enzyme Microb Technol 35, 81-86. https://doi.org/10.1016/j.enzmictec.2004.03.016. 

  32. Kendirlioglu G and Cetin AK. 2017. Effect of different wavelengths of light on growth, pigment content and protein?amount of Chlorella vulgaris. Fresenius Environ Bull 26,?7974-7980. 

  33. Khalili A, Najafpour GD, Amini G and Samkhaniyani F. 2015.?Influence of nutrients and LED light intensities on biomass?production of microalgae Chlorella vulgaris. Biotechnol Bioprocess Eng 20, 284-290. https://doi.org/10.1007/s12257-013-0845-8. 

  34. Kim DC, Won SI and In MJ. 2014a. Preparation and quality characteristics of Mul-kimchi added with Chlorella. J Appl Biol?Chem 57, 23-28. https://doi.org/10.3839/jabc.2014.004. 

  35. Kim DG, Lee CS, Park SM and Choi YE. 2014b. Manipulation?of light wavelength at appropriate growth stage to enhance?biomass productivity and fatty acid methyl ester yield using?Chlorella vulgaris. Bioresour Technol 159, 240-248. https://doi.org/10.1016/j.biortech.2014.02.078. 

  36. Kim SH, Sunwoo IY, Hong HJ, Awah CC, Jeong GT and Kim?SK. 2019. Lipid and unsaturated fatty acid productions from?three microalgae using nitrate and light-emitting diodes with?complementary LED wavelength in a two-phase culture?system. Bioprocess Biosyst Eng 42, 1517-1526. https://doi.org/10.1007/s00449-019-02149-y. 

  37. Korozi E, Kefalogianni I, Tsagou V, Chatzipavlidis I, Markou G?and Karnaori A. 2023. Evaluation of growth and production?of high-value-added metabolites in Scenedesmus quadricauda and Chlorella vulgaris grown on crude glycerol under heterotrophic and mixotrophic conditions using monochromatic light-emitting diodes (LEDs). Foods 12, 3068.?https://doi.org/10.3390/foods12163068. 

  38. Kumar MS, Miao ZH and Wyatt SK. 2010. Influence of nutrient loads, feeding frequency and inoculum source on growth?of Chlorella vulgaris in digested piggery effluent culture?medium. Bioresour Technol 101, 6012-6018. https://doi.org/10.1016/j.biortech.2010.02.080. 

  39. Kwon HK, Oh SJ, Yang HS and Kim DM. 2013. Laboratory?study for the phytoremediation of eutrophic coastal sediment?using benthic microalgae and light emitting diode (LED). J?Fac Agric 58, 417-425. https://doi.org/10.5109/27374. 

  40. Lariguet P and Fankhauser C. 2004. Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition?of gravitropism and phototropin promotion of phototropism. Plant J 40, 826-834. https://doi.org/10.1111/j.1365-313x.2004.02256.x. 

  41. Lederman TC and Tett P. 1981. Problems in modelling the photosynthesis-light relationship for phytoplankton. Bot Mar?24, 125-134. https://doi.org/10.1515/botm.1981.24.3.125. 

  42. Lee GC and Plasson BO. 1994. High-density algal photobioreactors using light-emitting diodes. Biotechnol Bioeng 44,?1161-1167. https://doi.org/10.1002/bit.260441002. 

  43. Lee MC. 2007. The effects of Chlorella supplements for human.?J Coach Develop 9, 31-40. 

  44. Lee UH, Kim SH, Lee SB, Kim SK and Jeong GT. 2023. Optimization of a two-phase culture system of Chlamydomonas?hedleyi using light-emitting diodes and potential as a biodiesel feedstock. Process Biochem 127, 138-144. https://doi.org/10.1016/j.procbio.2023.02.012. 

  45. Loganathan BG, Orsat V, Lefsrub and Wu BS. 2020. A comprehensive study on the effect of light quality imparted by?light-emitting diodes (LEDs) on the physiological and biochemical properties of the microalgal consortia of Chlorella?variabilis and Scenedesmus obliquus cultivated in dairy?wastewater. Bioprocess Biosyst Eng 43, 1445-1455. https://doi.org/10.1007/s00449-020-02338-0. 

  46. Lowry OH, Rosebrough NJ, Farr AL and Randall RJ. 1951.?Protein measurement with the Folin phenol reagent. J?Biol Chem 193, 265-275. https://doi.org/10.1016/s0021-9258(19)52451-6. 

  47. Ma G, Zhang L, Kato M, Yamawaki K, Kiriiwa Y, Yahata M,?Ikoma Y and Matsumoto H. 2012. Effect of blue and red?LED light irradiation on β-cryptoxanthin accumulation in?the flavedo of citrus fruits. J Agric Food Chem 60, 197-201.?https://doi.org/10.1021/jf203364m. 

  48. Mao R and Guo S. 2018. Performance of the mixed LED light?quality on the growth and energy efficiency of Arthrospira platensis. Appl Microbiol Biotechnol 102, 5245-5254.?https://doi.org/10.1007/s00253-018-8923-7. 

  49. Markou G. 2014. Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira?platensis cultivated in semi-continuous mode. Appl Biochem Biotechnol 172, 2758-2768. https://doi.org/10.1007/s12010-014-0727-3. 

  50. Marsh JB and Weinstein DB. 1966. Simple charring method for?determination of lipids. J Lipid Res 7, 574-576. https://doi.org/10.1016/s0022-2275(20)39274-9. 

  51. Menon KR, Balan R and Suraishkumar GK. 2013. Stress induced lipid production in Chlorella vulgaris: Relationship?with specific intracellular reactive species levels. Biotechnol?Bioeng 110, 1627-1636. https://doi.org/10.1002/bit.24835. 

  52. Mulo P, Sakurai L and Aro EM. 2012. Strategies for psbA gene?expression in cyanobacteria, green algae and higher plants:?From transcription to PSII repair. Biochim Biophys Acta?Bioenerg 1817, 247-257. https://doi.org/10.1016/j.bba-bio.2011.04.011. 

  53. Noda K, Ohno N, Tanaka K, Kamiya N, Okuda M, Yadomae T,?Nomoto K and Shoyama Y. 1996. A water-soluble antitumor?glycoprotein from Chlorella vulgaris. Planta Med 62, 423-426. https://doi.org/10.1055/s-2006-957931. 

  54. Nurachman Z, H H, Rahmaniyah RW, Kurnia D, Hidayat R, Prijamboedi B, Suendo V, Ratnaningsih E, Panggabean LMG?and Nurbaiti S. 2015. Tropical marine Chlorella sp. PP1?as a source of photosynthetic pigments for dye-sensitized?solar cells. Algal Res 10, 25-32. https://doi.org/10.1016/j.algal.2015.04.009. 

  55. Oh SJ, Kwon HK, Jeon JY and Yang HS. 2015. Effect of?monochromatic light emitting diode on the growth of?four microalgae species (Chlorella vulgaris, Nitzschia sp.,?Phaeodactylum tricornutum, Skeletonema sp.). J Korean?Soc Mar Environ Saf 21, 1-8. https://doi.org/10.7837/kosomes.2015.21.1.001. 

  56. Park JC, Kwon ON, Hong SE, An HC, Bae JH, Park MS and?Park HG. 2013a. Changes in the growth and biochemical?composition of Nannochloropsis sp. cultures using light-emitting diodes. Korean J Fish Aquat Sci 46, 259-265.?https://doi.org/10.5657/kfas.2013.0259. 

  57. Park JE, Park YG, Jeong BR and Hwang SJ. 2012. Growth?and anthocyanin content of lettuce as affected by artificial?light source and photoperiod in a closed-type plant production system. Hortic Sci Technol 30, 673-679. https://doi.org/10.7235/hort.2012.12020. 

  58. Park JY, Um YS, Jung IH, Jung YJ and Kim KH. 2013b. Development in auxiliary lighting for weather information.?Korea Sci Art Forum 14, 193. https://doi.org/10.17548/ksaf.2013.12.14.193. 

  59. Payer HD, Sotriffer U and Mohr H. 1969. Effects of blue and red?light on photosynthetic 14 CO 2 uptake, and distribution of 14 C?in free and proteinbound amino acids in fern gametophytes?[Dryopteris filix-mas (L) schott. Planta 85, 270-283. https://doi.org/10.1007/bf00389403. 

  60. Ra CH, Kang CH, Jung JH, Jeong GT and Kim SK. 2016. Effects of light-emitting diodes (LEDs) on the accumulation?of lipid content using a two-phase culture process with three?microalgae. Bioresour Technol 212, 254-261. https://doi.org/10.1016/j.biortech.2016.04.059. 

  61. Richmond A. 2003. Handbook of microalgal culture: Biotechnology and applied phycology. In: Photosynthesis in Microalgae. Masojidek J and Koblizek M, eds. Blackwell Science,?Oxford, U.K.? 

  62. Ruyters G. 1984. Effects of blue light on enzymes. In: Blue Light?Effects in Biological Systems. Proceedings in Life Sciences.?Senger H, ed. Springer, Berlin, Heidelberg.283-301. https://doi.org/10.1007/978-3-642-69767-8_32. 

  63. Safi C, Zebib B, Merah O, Pontalier PY and Garcia CV. 2014.?Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew Sust Energ?Rev 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007. 

  64. Sergejevova M and Masojidek J. 2012. Chlorella biomass as?feed supplement for freshwater fish: sterlet,Acipenser ruthenus. Aquac Res 44, 157-159. https://doi.org/10.1111/j.1365-2109.2011.03011.x. 

  65. Severes A, Hegde S, D'Souza L and Hegde S. 2017. Use of light?emitting diodes (LEDs) for enhanced lipid production in micro-algae based biofuels. J Photochem Photobiol B Biol 170,?235-240. https://doi.org/10.1016/j.jphotobiol.2017.04.023. 

  66. Sirisuk P, Ra CH, Jeong GT and Kim SK. 2018. Effects of?wavelength mixing ratio and photoperiod on microalgal?biomass and lipid production in a two-phase culture system?using LED illumination. Bioresour Technol 253, 175-181.?https://doi.org/10.1016/j.biortech.2018.01.020. 

  67. Stanier RY, Kunisawa R, Mandel M CBG and Cohen-Bazire G.?1971. Purification and properties of unicellular blue-green?algae (order Chroococcales). Bacteriol Rev 35, 171-205.?https://doi.org/10.1128/br.35.2.171-205.1971. 

  68. Suyono EA, Listyarini A and Hardiyati A. 2016. The effect of?blue light in silinder photobioreactor on absorption of nitrogen and phosphate in liquid livestock waste and carbohydrate content of Chlorella zofingiensis Donz. Appl Mech?Mater 842, 103-110. https://doi.org/10.4028/www.scientific.net/amm.842.103. 

  69. Takemiya A, Inoue SI, Doi M, Kinoshita T and Shimazaki KI. 2005. Phototropins promote plant growth in response to blue?light in low light environments. Plant Cell 17, 1120-1127.?https://doi.org/10.1105/tpc.104.030049. 

  70. Taufikurahman T and Shafira H. 2019. Comparison Between?Chlorella vulgaris and Chlorella pyrenoidosa in Biomass?and Protein Content, Cultivated in Bioslurry and Grown Under Various LED Types. Joint Symposium on Plant Scienes?and Products, Bandung, Indonesia. 

  71. Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM and Idris A.?2014. Enhancing growth and lipid production of marine?microalgae for biodiesel production via the use of different?LED wavelengths. Bioresour Technol 162, 38-44. https://doi.org/10.1016/j.biortech.2014.03.113. 

  72. Vasudevan PT and Briggs M. 2008. Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol 35, 421-430. https://doi.org/10.1007/s10295-008-0312-2. 

  73. Wang CY, Fu CC and Liu YC. 2007. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem?Eng J 37, 21-25. https://doi.org/10.1016/j.bej.2007.03.004. 

  74. Xu W, Gao Z, Qi Z, Qiu M, Peng JQ and Shao R. 2014. Effect of dietary chlorella on the growth performance and?physiological parameters of gibel carp, Carassius auratus?gibelio. Turkish J Fish Aquat Sci 14, 53-57. https://doi.org/10.4194/1303-2712-v14_1_07. 

  75. Yan C, Luo X and Zheng Z. 2013. Effects of various LED light?qualities and light intensity supply strategies on purification of slurry from anaerobic digestion process by Chlorella?vulgaris. Int Biodeterior Biodegrad 79, 81-87. https://doi.org/10.1016/j.ibiod.2013.01.016. 

  76. Yoshioka M, Yago T, Staka YY, Arakawa H and Morinaga T. 2012. Effect of high frequency of intermittent light on the?growth and fatty acid profile of Isochrysis galbana. Aquaculture 338-341, 111-117. https://doi.org/10.1016/j.aquaculture.2012.01.005. 

  77. Zhao Y, Sun S, Hu C, Zhang H, Xu J and Ping L. 2015. Performance of three microalgal strains in biogas slurry purification and biogas upgrade in response to various mixed light-emitting diode light wavelengths. Bioresour Technol 187,?338-345. https://doi.org/10.1016/j.biortech.2015.03.130. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로