$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

전도성 페이스트용 코어-쉘 TiO2/Ag 나노입자의 합성 및 특성 연구
Core-shell TiO2/Ag Nanoparticle Synthesis and Characterization for Conductive Paste 원문보기

공업화학 = Applied chemistry for engineering, v.34 no.1, 2023년, pp.36 - 44  

심상보 (창성나노텍(주)) ,  한종대 (창원대학교 공과대학 스마트그린공학부)

초록
AI-Helper 아이콘AI-Helper

코어-쉘 TiO2/Ag 나노입자를 수정된 졸-겔 공정과 함께 acetoxime을 환원제로 사용한 물/dodecylbenzenesulfonic acid (DDBA)/cyclohexane의 역 미셀 방법으로 합성하였다. 합성된 TiO2/Ag 나노입자의 구조, 형태 및 크기를 XRD, UV-visible spectroscopy, SEM, TEM 및 TGA를 이용하여 조사하였다. TiO2/Ag 나노입자의 크기는 [물]/[DDBA]의 몰비를 조절하여 제어할 수 있었다. TiO2/Ag 나노입자의 크기와 다분산성은 [물]/[DDBA]의 몰비가 증가함에 따라 증가하였다. 아나타제 결정상의 TiO2 나노입자 위에 생성된 Ag 나노입자는 430 nm 주변에서 강한 표면 플라즈몬 공명(SPR) 흡수 특성을 나타내었다. SPR 피크는 나노입자 크기의 증가에 따라 장파장으로의 적색 이동이 나타났다. 70 wt% 조성으로 TiO2/Ag 나노입자를 분산시켜 전도성 페이스트를 제조하고, 스크린 인쇄법으로 PET 필름에 코팅하여 전도성을 조사하였다. TiO2/Ag 나노입자 페이스트로 코팅된 필름은 상용 Ag 페이스트의 경우보다 높은 405~630 μΩ/sq 영역의 표면저항을 나타내었다.

Abstract AI-Helper 아이콘AI-Helper

Core-shell TiO2/Ag nanoparticles were synthesized by a modified sol-gel process and the reverse micelle method using acetoxime as a reducing agent in water/dodecylbenzenesulfonic acid (DDBA)/cyclohexane. The structure, shape, and size of the TiO2/Ag nanoparticles were investigated using X-ray diffra...

주제어

표/그림 (9)

참고문헌 (54)

  1. J. R. Camargo, L. O. Orzari, D. A. G. Araujo, P. R. d. Oliveira, C. Kalinke , D. P. Rocha, A. L. d. Santos, R. M. Takeuchi, R. A. A. Munoz, J. A. Bonacin, and B. C. Janegitz, Development of conductive inks for electrochemical sensors and biosensors, Microchem. J., 164, 105998 (2021). 

  2. J.-X. Wu, C.-P. Chu, and Y.-C. Liao, Solderable conductive paste for electronic textiles, J. Taiwan Inst. Chem. Eng., 142, 104616 (2023). 

  3. Y. Z. N. Htwe and M. Mariatti, Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: Progress, opportunities, and challenges, J. Sci.: Adv. Mater. Devices, 7, 100435 (2022). 

  4. D. Tsakona, I. Theodorakos, A. Kalaitzis, and I. Zergioti, Investigation on high speed laser printing of silver nanoparticle inks on flexible substrates, Appl. Surf. Sci., 513, 145912 (2020). 

  5. Y. Yang, N. Bai, T. Cao, X. Zhang, Y. Gao, J. Zhang, P. Zhao, and J. Huang, Numerical and experimental investigations on intense pulsed light sintering of silver nanoparticle inks for printed electronics, Int. J. Therm. Sci., 176, 117507 (2022). 

  6. N. Ibrahim, J. O. Akindoyo, and M. Mariatti, Recent development in silver-based ink for flexible electronics, J. Sci.: Adv. Mater. Devices, 7, 100395 (2022). 

  7. T. Liu, J. Zhao, D. Luo, Z. Xu, X. Liu, H. Ning, J. Chen, J. Zhong, R. Yao, and J. Peng, Inkjet printing high performance flexible electrodes via a graphene decorated Ag ink, Surf. Interfaces, 28, 101609 (2022). 

  8. J. H. Sohn, L. Q. Pham, H. S. Kang, J. H. Park, B. C. Lee, and Y. S. Kang, Preparation of conducting silver paste with Ag nanoparticles prepared by e-beam irradiation, Radiat. Phys. Chem., 79, 1149-1153 (2010). 

  9. A. Pajor-Swierzy, K. Szczepanowicz, A. Kamyshny, and S. Magdassi, Metallic core-shell nanoparticles for conductive coatings and printing, Adv. Colloid Interface Sci., 299, 102578 (2022). 

  10. X.-W. Han, X.-F. Zeng, J. Zhang, H. Huan, J.-X. Wang, N. R. Foster, and J.-F. Chen, Synthesis of transparent dispersion of monodispersed silver nanoparticles with excellent conductive performance using high-gravity technology, Chem. Eng. J., 296, 182-190 (2016). 

  11. S. S. Chawhan, D. P. Barai, and B. A. Bhanvase, Investigation on thermophysical properties, convective heat transfer and performance evaluation of ultrasonically synthesized Ag-doped TiO 2 hybrid nanoparticles based highly stable nanofluid in a minichannel, Therm. Sci. Eng. Prog., 25, 100928 (2021). 

  12. S. K. Soylu, I. Atmaca, M. Asilturk, and A. Dogan, Improving heat transfer performance of an automobile radiator using Cu and Ag doped TiO 2 based nanofluids, Appl. Therm. Eng., 157, 113745 (2019). 

  13. J. Singh, B. Satpati, and S. Mohapatra, Structural, OPTICAL and plasmonic properties of Ag-TiO 2 hybrid plasmonic nanostructures with enhanced photocatalytic activity, Plasmonics, 12, 877-888 (2017). 

  14. H. Ran, J. Fan, X. Zhang, J. Mao, and G. Shao, Enhanced performances of dye-sensitized solar cells based on Au-TiO 2 and Ag-TiO 2 plasmonic hybrid nanocomposites, Appl. Surf. Sci., 430, 415-423 (2018). 

  15. K. Balachandran, T. Kalaivani, D. Thangaraju , S. Mageswari , M.S. V. Senan, and A. Preethi, Fabrication of photoanodes using sol-gel synthesized Ag-doped TiO 2 for enhanced DSSC efficiency, Mater. Today: Proc., 37, 515-521 (2021). 

  16. Y. X. Dong, X. L. Wang, E. M. Jin, S. M. Jeong, B. Jin, and S. H. Lee, One-step hydrothermal synthesis of Ag decorated TiO 2 nanoparticles for dye-sensitized solar cell application, Renew. Energ., 135, 1207-1212 (2019). 

  17. K. Balachandran, T. Kalaivani, D. Thangaraju, S. Mageswari, M. S. V. Senan, and A. Preethi, Fabrication of photoanodes using sol-gel synthesized Ag-doped TiO 2 for enhanced DSSC efficiency, Mater. Today: Proc., 37, 515-521 (2021). 

  18. Y. X. Dong, X. L. Wang, E. M. Jin, S. M. Jeong, B. Jin, and S. H. Lee, One-step hydrothermal synthesis of Ag decorated TiO 2 nanoparticles for dye-sensitized solar cell application, Renew. Energ., 135, 1207-1212 (2019). 

  19. D.-H. Yoon, M. R. U. D. Biswas, and A. Sakthisabarimoorthi, Enhancement of photoelectrochemical activity by Ag coating on black TiO 2 nanoparticles, Mater. Chem. Phys., 291, 126675 (2022). 

  20. Y. Li, H. Wu, H. Chen, Q. Huang, L. Cai, Y. Du, S. Liu, Z. Sheng, and J. Gao, Surface enhanced Raman effect of Ag/TiO 2 thin films with arbitrarily cut, flexible and reusable performance, Optik, 185, 510-514 (2019). 

  21. K. Nanaji, R. K. S. K. Janardhana, T. N. Rao, and S. Anandan, Energy level matching for efficient charge transfer in Ag doped - Ag modified TiO 2 for enhanced visible light photocatalytic activity, J. Alloys Compd., 794, 662-671 (2019). 

  22. G. K. Hassan, W. H. Mahmoud, A. Al-sayed, S. H. Ismail, A. A. El-Sherif, and S. M. A. d. E. Wahab, Multi-functional of TiO 2 @Ag core-shell nanostructure to prevent hydrogen sulfide formation during anaerobic digestion of sewage sludge with boosting of bio-CH 4 production, Fuel, 333, 126608 (2023). 

  23. M. Michalska, J. Pavlovsky, K. Lemanski, M. Malecka, M. Ptak, V. Novak, M. Kormunda, and V. Matejka, The effect of surface modification with Ag nanoparticles on 21 nm TiO 2 : anatase/rutile material for application in photocatalysis, Mater. Today Chem., 26, 101123 (2022). 

  24. E. Alikhaidarova, D. Afanasyev, and N. Ibrayev, Electrical properties of nanocomposite materials based on PEDOT:PSS polymer mixture doped with Ag, Ag-TiO 2 and Ag-SiO 2 nanoparticles, Mater. Today: Proc., 25, 28-32 (2020). 

  25. S.-B. Sim and J.-D. Han, Synthesis of SiO2/Ag core-shell nanoparticles for conductive paste application, Appl. Chem. Eng., 32, 28-34 (2020). 

  26. S.-B. Sim and J.-D. Han, Sonochemical synthesis of copper-silver core-shell particles for conductive paste application, Appl. Chem. Eng., 29, 782-788 (2018). 

  27. S.-H. Chen, S.-H. Chan, Y.-T. Lin, and M.-C. Wu, Enhanced power conversion efficiency of perovskite solar cells based on mesoscopic Ag-doped TiO 2 electron transport layer, Appl. Surf. Sci., 469, 18-26 (2019). 

  28. S. Mondal and D. Basak, Plasmon assisted high ultraviolet to visible broad band photosensitivity in lateral Ag NPs-TiO 2 nanocomposite film, Surf. Interfaces, 31, 102090 (2022). 

  29. R. Lakra, R. Kumar, S. Kumar, D. Thatoi, and A. Soam, Synthesis of TiO 2 nanoparticles as electrodes for supercapacitor, Mater. Today: Proc., https://doi.org/10.1016/j.matpr.2022.11.271. 

  30. K. Rajangam, S. Amuthameena, S. Thangavel, V.S. Sanjanadevi, and B. Balraj, Synthesis and characterisation of Ag incorporated TiO 2 nanomaterials for supercapacitor applications, J. Mol. Struct., 1219, 128661 (2020). 

  31. K. I. Dhanalekshmi and K. S. Meena, Comparison of antibacterial activities of Ag@TiO 2 and Ag@SiO 2 core-shell nanoparticles, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128, 887-890 (2014). 

  32. D. Wang, B. Zhang, H. Ding, D. Liu, J. Xiang, X. J. Gao, X. Chen, Z. Li, L. Yang, H. Duan, J. Zheng, Z. Liu, B. Jiang, Y. Liu, N. Xie, H. Zhang, X. Yan, K. Fan, and G. Nie, TiO 2 supported single Ag atoms nanozyme for elimination of SARS-CoV2, Nano Today, 40, 101243 (2021) 

  33. S. Das, K. Saxena, L. P. Goswami, J. Gayathri, and D. S. Mehta, Mesoporous Ag-TiO 2 based nanocage like structure as sensitive and recyclable low-cost SERS substrate for biosensing applications, Opt. Mater., 125, 111994 (2022). 

  34. Z. Wang, A. A. Haidry, L. Xie, A. Zavabeti, Z. Li, W. Yin, R. L. Fomekong, and B. Saruhan, Acetone sensing applications of Ag modified TiO 2 porous nanoparticles synthesized via facile hydrothermal method, Appl. Surf. Sci., 533, 147383 (2020). 

  35. V. V. Lysak, Optical properties of core/shell nanoparticles: Comparison of TiO 2 /Ag and Ag/TiO 2 structures, Mater. Today: Proc., 4, 4890-4895 (2017). 

  36. W. Y. Padron-Hernandez, M. C. Ceballos-Chuc, D. Pourjafari, G. Oskam, J. C. Tinoco, A. G. Martinez-Lopez, and G. Rodriguez-Gattorno, Stable inks for inkjet printing of TiO 2 thin films, Mater. Sci. Semicond. Process, 81, 75-81 (2018). 

  37. K. Solanki, D. Parmar, C. Savaliya, S. Kumar, and S. Jethva, Surface morphology and optical properties of sol-gel synthesized TiO 2 nanoparticles: Effect of Co, Pd and Ni-doping, Mater. Today: Proc., 50, 2576-2580 (2022). 

  38. M. Yalcin, The effect of pH on the physical and structural properties of TiO 2 nanoparticles, J. Cryst. Growth, 585, 126603 (2022). 

  39. U. Sirisha, B. Sowjanya, H. R. Anjum, T. Punugoti, A. Mohamed, and M. Vangalapati, Synthesized TiO 2 nanoparticles for the application of photocatalytic degradation of synthetic toxic dye acridine orange, Mater. Today: Proc., 62, 3444-3449 (2022). 

  40. J. Noh, M. Yi, S. Hwang, K. M. Im, T. Yu, and J. Kim, A facile synthesis of rutile-rich titanium oxide nanoparticles using reverse micelle method and their photocatalytic applications, J. Ind. Eng. Chem., 33, 369-373 (2016). 

  41. T. Tatarchuk, N. Danyliuk, A. Shyichuk, W. Macyk, and M. Naushad, Photocatalytic degradation of dyes using rutile TiO 2 synthesized by reverse micelle and low temperature methods: real- time monitoring of the degradation kinetics, J. Mol. Liq., 342, 117407 (2021). 

  42. O. Pryshchepa, P. Pomastowski, and B. Buszewski, Silver nanoparticles: Synthesis, investigation techniques, and properties, Adv. Colloid Interface Sci., 284, 102246 (2020). 

  43. W. Li, X. Xu, W. Li, P. Liu, Y. Zhao, Q.g Cen, and M. Chen, One-step synthesis of Ag nanoparticles for fabricating highly conductive patterns using infrared sintering, J. Mater. Res. Technol., 9, 142-151 (2020). 

  44. J. Eastoe, M. J. Hollamby, and L. Hudson, Recent advances in nanoparticle synthesis with reversed micelles, Adv. Colloid Interface Sci., 128-130, 5-15 (2006). 

  45. D. Singha, N. Barman, and K. Sahu, A facile synthesis of high optical quality silver nanoparticles by ascorbic acid reduction in reverse micelles at room temperature, J. Colloid Interface Sci., 413, 37-42 (2014). 

  46. T. Kiba, K. Masui, Y. Inomata, A. Furumoto, M. Kawamura, Y. Abe, and K. H. Kim, Control of localized surface plasmon resonance of Ag nanoparticles by changing its size and morphology, Vacuum, 19, 110432 (2021). 

  47. F. Ghanbary and A. Jafarian, Preparation and photocatalytic properties of silver doped titanium dioxide nanoparticles and using artificial neural network for modeling of photocatalytic activity, Aust. J. Basic Appl. Sci., 5, 2889-2898 (2011). 

  48. R. Desai, V. Mankad, S. K. Gupta, and P. K. Jha, Size distribution of silver nanoparticles: UV-visible spectroscopic assessment, Nanosci. Nanotechnol. Lett., 4, 30-34 (2012). 

  49. A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, and A. Posada-Amarillas, Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol, Physica E: Low Dimens. Syst. Nanostruct., 27, 104-112 (2005). 

  50. A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, and A. Posada-Amarillas, Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol, Mater. Res. Bull., 43, 90-96 (2008). 

  51. C. Xu, W.-j. Li, Y.-m. Wei, and X.-y. Cui, Characterization of SiO 2 /Ag composite particles synthesized by in situ reduction and its application in electrically conductive adhesives, Mater. Des., 83, 745-752 (2015). 

  52. P. S. Popovetskiya and D.I. Beketovaa, Silver nanoparticles stabilized by AOT and Tergitol NP-4 mixture: Influence of composition on electrophoretic concentration, properties of concentrated organosols and conductivity of films, Colloids Surf. A, 568, 51-58 (2019). 

  53. Z. Moradi, K. Akhbari, A. Phuruangrat, and F. Costantino, Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver(I) coordination polymer precursor, J. Mol. Struct., 1133, 172-178 (2017). 

  54. S. I. Mogal, V. G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P. A. Joshi, and D. O. Shah, Single-step synthesis of silver-doped titanium dioxide: Influence of silver on structural, textural, and photocatalytic properties, Ind. Eng. Chem. Res., 53, 5749-5758 (2014). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로